論文の概要: Nearest Neighbor Classication for Classical Image Upsampling
- arxiv url: http://arxiv.org/abs/2403.19611v1
- Date: Thu, 28 Mar 2024 17:31:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 15:14:42.400452
- Title: Nearest Neighbor Classication for Classical Image Upsampling
- Title(参考訳): 古典的イメージアップサンプリングのための最も近い隣の古典化
- Authors: Evan Matthews, Nicolas Prate,
- Abstract要約: 結果の解像度は何らかの要因によって改善され、最終的な結果が人間のテストに合格する。
アップスケーリングの時間的複雑さは、ダウンスケーリングの実装の損失に比較的近い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given a set of ordered pixel data in the form of an image, our goal is to perform upsampling on the data such that: the resulting resolution is improved by some factor, the final result passes the human test, having added new, believable, and realistic information and detail to the image, the time complexity for upscaling is relatively close to that of lossy upscaling implementations.
- Abstract(参考訳): 画像の形式で順序付けられたピクセルデータの集合が与えられた場合、我々のゴールは、何らかの要因によって結果の解像度が向上し、最終的な結果が人間のテストに合格し、画像に新しく、信頼性があり、現実的な情報と詳細を加えて、アップスケーリングの時間的複雑さは、失われたアップスケーリング実装に比較的近い、というように、データのアップサンプリングを行うことである。
関連論文リスト
- Towards Efficient and Accurate CT Segmentation via Edge-Preserving Probabilistic Downsampling [2.1465347972460367]
限られたリソースやネットワークトレーニングの迅速化を必要とするイメージやラベルのダウンサンプリングは、小さなオブジェクトと薄いバウンダリの損失につながる。
これにより、セグメンテーションネットワークのイメージを正確に解釈し、詳細なラベルを予測する能力が損なわれ、元の解像度での処理と比較して性能が低下する。
エッジ保存型確率ダウンサンプリング(EPD)という新しい手法を提案する。
ローカルウィンドウ内のクラス不確実性を利用してソフトラベルを生成し、ウィンドウサイズがダウンサンプリング係数を規定する。
論文 参考訳(メタデータ) (2024-04-05T10:01:31Z) - Improving Feature Stability during Upsampling -- Spectral Artifacts and the Importance of Spatial Context [15.351461000403074]
画像復元、画像分割、不均一性推定など、さまざまなタスクにおいて、画素ワイズ予測が求められている。
以前の研究では、再サンプリング操作がエイリアスなどのアーティファクトの対象であることが示されている。
アップサンプリング中に大きな空間的コンテキストが利用できることで,安定かつ高品質な画素ワイズ予測が実現可能であることを示す。
論文 参考訳(メタデータ) (2023-11-29T10:53:05Z) - Super-Resolution of License Plate Images Using Attention Modules and
Sub-Pixel Convolution Layers [3.8831062015253055]
監視画像における構造的特徴およびテクスチャ的特徴の検出を強化するために,Single-Image Super-Resolution (SISR) アプローチを導入する。
提案手法は,サブピクセルの畳み込み層と,光学的文字認識(OCR)モデルを用いて特徴抽出を行うロス関数を含む。
以上の結果から, これらの低解像度合成画像の再構成手法は, 定量化と定性化の両面で, 既存の画像よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-05-27T00:17:19Z) - Any-resolution Training for High-resolution Image Synthesis [55.19874755679901]
生成モデルは、様々な大きさの自然画像であっても、一定の解像度で動作します。
すべてのピクセルが重要であり、そのネイティブ解像度で収集された可変サイズのイメージを持つデータセットを作成する、と我々は主張する。
ランダムなスケールでパッチをサンプリングし、可変出力解像度で新しいジェネレータを訓練するプロセスである。
論文 参考訳(メタデータ) (2022-04-14T17:59:31Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
カモフラージュされたオブジェクトを背景に視覚的に同化させることは、オブジェクト検出アルゴリズムにとって難しい。
エッジやバウンダリのぼやけた視界を生じさせる細部劣化を避けるために,高分解能テクスチャの詳細を抽出することを目的としている。
我々は,高解像度特徴量による低解像度表現を反復的フィードバック方式で洗練する新しいHitNetを提案する。
論文 参考訳(メタデータ) (2022-03-22T11:20:21Z) - Learning to Downsample for Segmentation of Ultra-High Resolution Images [6.432524678252553]
空間的に変化するダウンサンプリング戦略とセグメンテーションを併用して学習することで,計算予算に制限のある大きな画像のセグメンテーションにメリットがあることが示される。
本手法は, サンプリング密度を異なる場所に適用することにより, より小さな重要な領域から, より少ない領域からより多くのサンプルを収集する。
2つの公開データセットと1つのローカル高解像度データセットについて、本手法は、より多くの情報を保存するためのサンプリング位置を一貫して学習し、ベースライン法よりもセグメンテーション精度を向上することを示す。
論文 参考訳(メタデータ) (2021-09-22T23:04:59Z) - Toward Real-World Super-Resolution via Adaptive Downsampling Models [58.38683820192415]
本研究では,制約のある事前知識を伴わずに未知のサンプル処理をシミュレートする手法を提案する。
対の例を使わずに対象LR画像の分布を模倣する汎用化可能な低周波損失(LFL)を提案する。
論文 参考訳(メタデータ) (2021-09-08T06:00:32Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
本研究では,セマンティックデータ拡張法 (SDA) を提案する。
また,適応的セマンティックデータ拡張 (ASDA) を提案する。
最先端の結果は、挑戦的なベンチマークで得られます。
論文 参考訳(メタデータ) (2020-08-03T07:56:04Z) - High-Resolution Image Inpainting with Iterative Confidence Feedback and
Guided Upsampling [122.06593036862611]
既存の画像塗装法は、実アプリケーションで大きな穴を扱う際に、しばしばアーティファクトを生成する。
本稿では,フィードバック機構を備えた反復インペイント手法を提案する。
実験により,本手法は定量評価と定性評価の両方において既存手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2020-05-24T13:23:45Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。