論文の概要: STRUM-LLM: Attributed and Structured Contrastive Summarization
- arxiv url: http://arxiv.org/abs/2403.19710v1
- Date: Mon, 25 Mar 2024 18:32:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 17:43:20.199722
- Title: STRUM-LLM: Attributed and Structured Contrastive Summarization
- Title(参考訳): STRUM-LLM: 分布および構造化コントラストの要約
- Authors: Beliz Gunel, James B. Wendt, Jing Xie, Yichao Zhou, Nguyen Vo, Zachary Fisher, Sandeep Tata,
- Abstract要約: STRUM-LLMは2つのオプションが大きく異なり、ユーザの判断に最も影響を与える可能性のある属性を識別する。
我々の技術はドメインに依存しないものであり、人間のデータや固定属性リストを監督する必要がない。
STRUM-LLM Distilledは100倍のスループットを持ち、性能は10倍小さい。
- 参考スコア(独自算出の注目度): 7.5738178344364755
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Users often struggle with decision-making between two options (A vs B), as it usually requires time-consuming research across multiple web pages. We propose STRUM-LLM that addresses this challenge by generating attributed, structured, and helpful contrastive summaries that highlight key differences between the two options. STRUM-LLM identifies helpful contrast: the specific attributes along which the two options differ significantly and which are most likely to influence the user's decision. Our technique is domain-agnostic, and does not require any human-labeled data or fixed attribute list as supervision. STRUM-LLM attributes all extractions back to the input sources along with textual evidence, and it does not have a limit on the length of input sources that it can process. STRUM-LLM Distilled has 100x more throughput than the models with comparable performance while being 10x smaller. In this paper, we provide extensive evaluations for our method and lay out future directions for our currently deployed system.
- Abstract(参考訳): ユーザは2つの選択肢(A対B)間の意思決定に苦労することが多い。
本稿では,この課題に対処するSTRUM-LLMを提案する。
STRUM-LLMは有用なコントラストを識別する: 2つのオプションが大きく異なる特定の属性と、ユーザの判断に最も影響を与える可能性が高い属性。
我々の技術はドメインに依存しないものであり、人間ラベル付きデータや固定属性リストを監督する必要がない。
STRUM-LLMは、すべての抽出をテキスト証拠とともに入力源に還元し、処理できる入力源の長さに制限を持たない。
STRUM-LLM Distilledは100倍のスループットを持ち、性能は10倍小さい。
本稿では,本手法について広範な評価を行い,現在展開中のシステムにおける今後の方向性について概説する。
関連論文リスト
- Selecting Influential Samples for Long Context Alignment via Homologous Models' Guidance and Contextual Awareness Measurement [62.87020831987625]
本稿では,長距離依存関係に富む影響力のある,高品質なサンプルを識別する新しいフレームワークを提案する。
我々は、長距離依存を効果的にフレーム化するために、影響力のあるデータとして最も難しいサンプルを選択する。
実験により, GATEAUは長距離依存関係に富んだサンプルを効果的に同定し, これらのサンプルに基づいて訓練したモデルにより, より優れた指示追従と長文理解能力を示すことが示された。
論文 参考訳(メタデータ) (2024-10-21T04:30:53Z) - Do LLMs suffer from Multi-Party Hangover? A Diagnostic Approach to Addressee Recognition and Response Selection in Conversations [11.566214724241798]
本研究では,会話の特定の構造的属性間でのモデル性能を調査する手法を提案する。
我々はモデルの弱点を診断するために、応答選択とアドレス認識タスクに焦点をあてる。
その結果、応答選択は会話のテキストの内容に依存しており、アドレス認識ではその構造的次元を捉える必要があることがわかった。
論文 参考訳(メタデータ) (2024-09-27T10:07:33Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - Multi-Stage Spatio-Temporal Aggregation Transformer for Video Person
Re-identification [78.08536797239893]
本稿では,2つの新しいプロキシ埋め込みモジュールを設計したMSTAT(Multi-Stage Space-Temporal Aggregation Transformer)を提案する。
MSTATは、属性関連、アイデンティティ関連、および属性関連情報をビデオクリップからエンコードする3つのステージから構成される。
MSTATは様々な標準ベンチマークで最先端の精度を達成できることを示す。
論文 参考訳(メタデータ) (2023-01-02T05:17:31Z) - MACSum: Controllable Summarization with Mixed Attributes [56.685735509260276]
MACSumは、混合属性を制御するための最初の人間アノテーションによる要約データセットである。
混合制御可能な要約の新しいタスクに対する2つの単純かつ効果的なパラメータ効率のアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-09T17:17:37Z) - MGA-VQA: Multi-Granularity Alignment for Visual Question Answering [75.55108621064726]
視覚的な質問に答えることを学ぶことは、マルチモーダル入力が2つの特徴空間内にあるため、難しい作業である。
視覚質問応答タスク(MGA-VQA)のための多言語アライメントアーキテクチャを提案する。
我々のモデルはアライメントを異なるレベルに分割し、追加のデータやアノテーションを必要とせずにより良い相関関係を学習します。
論文 参考訳(メタデータ) (2022-01-25T22:30:54Z) - Making a (Counterfactual) Difference One Rationale at a Time [5.97507595130844]
本研究では,人的支援を伴わない反現実的データ拡張が,セレクタの性能を向上させることができるかどうかを考察する。
以上の結果から,CDAは関心のシグナルをよりよく捉えた合理性を生み出すことが示唆された。
論文 参考訳(メタデータ) (2022-01-13T19:05:02Z) - Dual-Stream Reciprocal Disentanglement Learning for Domain Adaption
Person Re-Identification [44.80508095481811]
本稿では,Dual-stream Reciprocal Disentanglement Learning (DRDL) という新しい手法を提案する。
DRDLでは、まず2つのエンコーダがID関連およびID非関連の特徴抽出のために構築され、それぞれ関連する分類器によって測定される。
提案手法は,計算複雑性を著しく低減するだけでなく,ID関連の特徴から冗長な情報を除去する。
論文 参考訳(メタデータ) (2021-06-26T03:05:23Z) - Exploring Explainable Selection to Control Abstractive Summarization [51.74889133688111]
説明可能性を重視した新しいフレームワークを開発する。
新しいペアワイズ行列は、文の相互作用、中心性、属性スコアをキャプチャする。
コンストラクタ内の文分割アテンション機構は、最終要約が所望のコンテンツを強調することを保証する。
論文 参考訳(メタデータ) (2020-04-24T14:39:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。