Computationally and Memory-Efficient Robust Predictive Analytics Using Big Data
- URL: http://arxiv.org/abs/2403.19721v1
- Date: Wed, 27 Mar 2024 22:39:08 GMT
- Title: Computationally and Memory-Efficient Robust Predictive Analytics Using Big Data
- Authors: Daniel Menges, Adil Rasheed,
- Abstract summary: This study navigates through the challenges of data uncertainties, storage limitations, and predictive data-driven modeling using big data.
We utilize Robust Principal Component Analysis (RPCA) for effective noise reduction and outlier elimination, and Optimal Sensor Placement (OSP) for efficient data compression and storage.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the current data-intensive era, big data has become a significant asset for Artificial Intelligence (AI), serving as a foundation for developing data-driven models and providing insight into various unknown fields. This study navigates through the challenges of data uncertainties, storage limitations, and predictive data-driven modeling using big data. We utilize Robust Principal Component Analysis (RPCA) for effective noise reduction and outlier elimination, and Optimal Sensor Placement (OSP) for efficient data compression and storage. The proposed OSP technique enables data compression without substantial information loss while simultaneously reducing storage needs. While RPCA offers an enhanced alternative to traditional Principal Component Analysis (PCA) for high-dimensional data management, the scope of this work extends its utilization, focusing on robust, data-driven modeling applicable to huge data sets in real-time. For that purpose, Long Short-Term Memory (LSTM) networks, a type of recurrent neural network, are applied to model and predict data based on a low-dimensional subset obtained from OSP, leading to a crucial acceleration of the training phase. LSTMs are feasible for capturing long-term dependencies in time series data, making them particularly suited for predicting the future states of physical systems on historical data. All the presented algorithms are not only theorized but also simulated and validated using real thermal imaging data mapping a ship's engine.
Related papers
- Compressing high-resolution data through latent representation encoding for downscaling large-scale AI weather forecast model [10.634513279883913]
We propose a variational autoencoder framework tailored for compressing high-resolution datasets.
Our framework successfully reduced the storage size of 3 years of HRCLDAS data from 8.61 TB to just 204 GB, while preserving essential information.
arXiv Detail & Related papers (2024-10-10T05:38:03Z) - Dynamic Data Pruning for Automatic Speech Recognition [58.95758272440217]
We introduce Dynamic Data Pruning for ASR (DDP-ASR), which offers fine-grained pruning granularities specifically tailored for speech-related datasets.
Our experiments show that DDP-ASR can save up to 1.6x training time with negligible performance loss.
arXiv Detail & Related papers (2024-06-26T14:17:36Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Energy-Efficient Edge Learning via Joint Data Deepening-and-Prefetching [9.468399367975984]
We propose a novel offloading architecture called joint data deepening-and-prefetching (JD2P)
JD2P is feature-by-feature offloading comprising two key techniques.
We evaluate the effectiveness of JD2P through experiments using the MNIST dataset.
arXiv Detail & Related papers (2024-02-19T08:12:47Z) - Improving age prediction: Utilizing LSTM-based dynamic forecasting for
data augmentation in multivariate time series analysis [16.91773394335563]
We propose a data augmentation and validation framework that utilizes dynamic forecasting with Long Short-Term Memory (LSTM) networks to enrich datasets.
The effectiveness of these augmented datasets was then compared with the original data using various deep learning models designed for chronological age prediction tasks.
arXiv Detail & Related papers (2023-12-11T22:47:26Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning.
However, the promising results achieved on current public datasets may not be applicable to practical scenarios.
We introduce the LargeST benchmark dataset, which includes a total of 8,600 sensors in California with a 5-year time coverage.
arXiv Detail & Related papers (2023-06-14T05:48:36Z) - Towards an Interpretable Data-driven Trigger System for High-throughput
Physics Facilities [7.939382824995354]
We introduce a new data-driven approach for designing high- throughput data filtering and trigger systems.
Our goal is to design a data-driven filtering system with a minimal run-time cost for determining which data event to keep.
We introduce key insights from interpretable predictive modeling and cost-sensitive learning in order to account for non-local inefficiencies in the current paradigm.
arXiv Detail & Related papers (2021-04-14T05:01:32Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Deep convolutional generative adversarial networks for traffic data
imputation encoding time series as images [7.053891669775769]
We have developed a generative adversarial network (GAN) based traffic sensor data imputation framework (TGAN)
In this study, we have developed a novel time-dependent encoding method called the Gramian Angular Summation Field (GASF)
This study shows that the proposed model can significantly improve the traffic data imputation accuracy in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) compared to state-of-the-art models on the benchmark dataset.
arXiv Detail & Related papers (2020-05-05T19:14:02Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
We bridge the gap between the abundance of available data and lack of relevant data, for the future learning tasks of a trained network.
We use the available data, that may be an imbalanced subset of the original training dataset, or a related domain dataset, to retrieve representative samples.
We demonstrate that data from a related domain can be leveraged to achieve state-of-the-art performance.
arXiv Detail & Related papers (2019-12-27T02:05:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.