論文の概要: Using Deep Learning to Increase Eye-Tracking Robustness, Accuracy, and Precision in Virtual Reality
- arxiv url: http://arxiv.org/abs/2403.19768v1
- Date: Thu, 28 Mar 2024 18:43:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 17:33:35.705457
- Title: Using Deep Learning to Increase Eye-Tracking Robustness, Accuracy, and Precision in Virtual Reality
- Title(参考訳): 深層学習を用いたバーチャルリアリティにおける視線追跡ロバスト性、精度、精度の向上
- Authors: Kevin Barkevich, Reynold Bailey, Gabriel J. Diaz,
- Abstract要約: この研究は、目の特徴追跡のための現代の機械学習(ML)に基づくいくつかの手法の影響を客観的に評価する。
メトリックには、視線推定の精度と精度、およびドロップアウト率が含まれる。
- 参考スコア(独自算出の注目度): 2.2639735235640015
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Algorithms for the estimation of gaze direction from mobile and video-based eye trackers typically involve tracking a feature of the eye that moves through the eye camera image in a way that covaries with the shifting gaze direction, such as the center or boundaries of the pupil. Tracking these features using traditional computer vision techniques can be difficult due to partial occlusion and environmental reflections. Although recent efforts to use machine learning (ML) for pupil tracking have demonstrated superior results when evaluated using standard measures of segmentation performance, little is known of how these networks may affect the quality of the final gaze estimate. This work provides an objective assessment of the impact of several contemporary ML-based methods for eye feature tracking when the subsequent gaze estimate is produced using either feature-based or model-based methods. Metrics include the accuracy and precision of the gaze estimate, as well as drop-out rate.
- Abstract(参考訳): モバイルおよびビデオベースの視線追跡装置から視線方向を推定するアルゴリズムは、眼球カメラ画像中を移動する眼球の特徴を、眼球中心や眼球境界などの移動する視線方向と照合する方法で追跡するのが一般的である。
これらの特徴を従来のコンピュータビジョン技術を用いて追跡することは、部分閉塞と環境反射のために困難である。
近年,機械学習(ML)を瞳孔追跡に活用する試みは,分割性能の基準値を用いて評価すると,優れた結果が得られたが,これらのネットワークが最終的な視線推定値の品質にどのように影響するかは分かっていない。
本研究は、特徴ベース法とモデルベース法のいずれかを用いて、その後の視線推定が生成される場合に、現代の視線特徴追跡法が与える影響を客観的に評価するものである。
メトリックには、視線推定の精度と精度、およびドロップアウト率が含まれる。
関連論文リスト
- Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry [52.131996528655094]
本稿では,LEAP(Long-term Effective Any Point Tracking)モジュールについて述べる。
LEAPは、動的トラック推定のために、視覚的、トラック間、時間的キューと慎重に選択されたアンカーを革新的に組み合わせている。
これらの特徴に基づき,強靭な視力計測システムLEAP-VOを開発した。
論文 参考訳(メタデータ) (2024-01-03T18:57:27Z) - CLERA: A Unified Model for Joint Cognitive Load and Eye Region Analysis
in the Wild [18.79132232751083]
目領域のダイナミックスをリアルタイムに分析することで、人間の視覚的注意の割り当てを監視し、精神状態を推定することができる。
共同学習フレームワークにおいて,正確なキーポイント検出と時間追跡を実現するCLERAを提案する。
また,共同瞳孔,眼開放性,ランドマークアノテーションを用いた30万人の顔の大規模データセットも導入した。
論文 参考訳(メタデータ) (2023-06-26T21:20:23Z) - Eye Gaze Estimation Model Analysis [2.4366811507669124]
本稿では、視線推定のための様々なモデルタイプについて論じ、非拘束環境における目印を用いた視線方向の予測結果を示す。
制約のない実世界の環境では、照明変更やその他の視覚的アーティファクトなどの要因により、最近の外観ベースの手法により、機能ベースの手法とモデルベースの手法が優れています。
論文 参考訳(メタデータ) (2022-07-28T20:40:03Z) - Towards Scale-Aware, Robust, and Generalizable Unsupervised Monocular
Depth Estimation by Integrating IMU Motion Dynamics [74.1720528573331]
教師なし単眼深度と自我運動推定は近年広く研究されている。
我々は、視覚情報とIMUモーションダイナミクスを統合した新しいスケールアウェアフレームワークDynaDepthを提案する。
我々は、KITTIおよびMake3Dデータセット上で広範囲な実験とシミュレーションを行うことにより、DynaDepthの有効性を検証する。
論文 参考訳(メタデータ) (2022-07-11T07:50:22Z) - How Facial Features Convey Attention in Stationary Environments [0.0]
本研究は,視覚的特徴が認知と疲労の予測に最も寄与する要因を分析することによって,従来の注意欠陥検出研究を拡大することを目的とする。
被験者の視覚データを様々なレベルの注意度で分析するために,オープンソースの顔分析ツールキットOpenFaceを利用した。
論文 参考訳(メタデータ) (2021-11-29T20:11:57Z) - Bayesian Eye Tracking [63.21413628808946]
モデルに基づく視線追跡は、目の特徴検出エラーの影響を受けやすい。
モデルベースアイトラッキングのためのベイズフレームワークを提案する。
提案手法は,最先端のモデルベースおよび学習ベースの手法と比較して,一般化能力の大幅な向上を示す。
論文 参考訳(メタデータ) (2021-06-25T02:08:03Z) - Calibrating Self-supervised Monocular Depth Estimation [77.77696851397539]
近年、ニューラルネットワークが深度を学習し、画像のシーケンスに変化を起こさせる能力を示す方法は、訓練信号として自己スーパービジョンのみを使用している。
カメラの構成や環境に関する事前情報を取り入れることで,センサの追加に頼ることなく,自己教師型定式化を用いて,スケールのあいまいさを排除し,深度を直接予測できることを示す。
論文 参考訳(メタデータ) (2020-09-16T14:35:45Z) - Towards End-to-end Video-based Eye-Tracking [50.0630362419371]
画像のみから視線を推定することは、観察不可能な人固有の要因のために難しい課題である。
本稿では,これらの意味的関係と時間的関係を明確に学習することを目的とした,新しいデータセットとアタッチメント手法を提案する。
視覚刺激からの情報と視線画像の融合が,文献に記録された人物と同じような性能を達成することにつながることを実証した。
論文 参考訳(メタデータ) (2020-07-26T12:39:15Z) - MLGaze: Machine Learning-Based Analysis of Gaze Error Patterns in
Consumer Eye Tracking Systems [0.0]
本研究では,市販眼球追跡装置が生成する視線誤差パターンを機械学習アルゴリズムを用いて検討した。
異なる誤差源が視線データ特性に与える影響は、視線検査やデータ統計によってほとんど区別できないが、機械学習モデルは、異なる誤差源の影響を特定し、これらの条件による視線エラーレベルの変動を予測することに成功している。
論文 参考訳(メタデータ) (2020-05-07T23:07:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。