Gegenbauer Graph Neural Networks for Time-varying Signal Reconstruction
- URL: http://arxiv.org/abs/2403.19800v2
- Date: Wed, 3 Apr 2024 13:49:23 GMT
- Title: Gegenbauer Graph Neural Networks for Time-varying Signal Reconstruction
- Authors: Jhon A. Castro-Correa, Jhony H. Giraldo, Mohsen Badiey, Fragkiskos D. Malliaros,
- Abstract summary: Time-varying graph signals are a critical problem in machine learning and signal processing with broad applications.
We propose a novel approach that incorporates a learning module to enhance the accuracy of the downstream task.
We conduct extensive experiments on real datasets to evaluate the effectiveness of our proposed approach.
- Score: 4.6210788730570584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing time-varying graph signals (or graph time-series imputation) is a critical problem in machine learning and signal processing with broad applications, ranging from missing data imputation in sensor networks to time-series forecasting. Accurately capturing the spatio-temporal information inherent in these signals is crucial for effectively addressing these tasks. However, existing approaches relying on smoothness assumptions of temporal differences and simple convex optimization techniques have inherent limitations. To address these challenges, we propose a novel approach that incorporates a learning module to enhance the accuracy of the downstream task. To this end, we introduce the Gegenbauer-based graph convolutional (GegenConv) operator, which is a generalization of the conventional Chebyshev graph convolution by leveraging the theory of Gegenbauer polynomials. By deviating from traditional convex problems, we expand the complexity of the model and offer a more accurate solution for recovering time-varying graph signals. Building upon GegenConv, we design the Gegenbauer-based time Graph Neural Network (GegenGNN) architecture, which adopts an encoder-decoder structure. Likewise, our approach also utilizes a dedicated loss function that incorporates a mean squared error component alongside Sobolev smoothness regularization. This combination enables GegenGNN to capture both the fidelity to ground truth and the underlying smoothness properties of the signals, enhancing the reconstruction performance. We conduct extensive experiments on real datasets to evaluate the effectiveness of our proposed approach. The experimental results demonstrate that GegenGNN outperforms state-of-the-art methods, showcasing its superior capability in recovering time-varying graph signals.
Related papers
- FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
arXiv Detail & Related papers (2023-11-10T17:13:26Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Time-varying Signals Recovery via Graph Neural Networks [6.206392817156767]
We propose a Time Graph Neural Network (TimeGNN) for the recovery of time-varying graph signals.
Our algorithm uses an encoder-decoder architecture with a specialized loss composed of a mean squared error function and a Sobolev smoothness operator.
arXiv Detail & Related papers (2023-02-22T11:50:39Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
Space-time graph neural networks (ST-GNNs) learn efficient graph representations of time-varying data.
In this paper we revisit the properties of ST-GNNs and prove that they are stable to graph stabilitys.
Our analysis suggests that ST-GNNs are suitable for transfer learning on time-varying graphs.
arXiv Detail & Related papers (2022-10-28T16:59:51Z) - Scalable Spatiotemporal Graph Neural Networks [14.415967477487692]
Graph neural networks (GNNs) are often the core component of the forecasting architecture.
In most pretemporal GNNs, the computational complexity scales up to a quadratic factor with the length of the sequence times the number of links in the graph.
We propose a scalable architecture that exploits an efficient encoding of both temporal and spatial dynamics.
arXiv Detail & Related papers (2022-09-14T09:47:38Z) - Graph-Time Convolutional Neural Networks: Architecture and Theoretical
Analysis [12.995632804090198]
We introduce Graph-Time Convolutional Neural Networks (GTCNNs) as principled architecture to aid learning.
The approach can work with any type of product graph and we also introduce a parametric graph to learn also the producttemporal coupling.
Extensive numerical results on benchmark corroborate our findings and show the GTCNN compares favorably with state-of-the-art solutions.
arXiv Detail & Related papers (2022-06-30T10:20:52Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
This paper tackles the problem of learning effective models to reconstruct missing data points.
We propose a class of attention-based architectures, that given a set of highly sparse observations, learn a representation for points in time and space.
Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode forward and backward time dependencies.
arXiv Detail & Related papers (2022-05-26T16:40:48Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Space-Time Graph Neural Networks [104.55175325870195]
We introduce space-time graph neural network (ST-GNN) to jointly process the underlying space-time topology of time-varying network data.
Our analysis shows that small variations in the network topology and time evolution of a system does not significantly affect the performance of ST-GNNs.
arXiv Detail & Related papers (2021-10-06T16:08:44Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
Graph neural networks may be impractical in some real-world scenarios due to a lack of sufficient high-quality training data.
We put forth a novel mathematically designed framework to analyze-temporal data.
arXiv Detail & Related papers (2020-12-06T19:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.