Segmentation Re-thinking Uncertainty Estimation Metrics for Semantic Segmentation
- URL: http://arxiv.org/abs/2403.19826v2
- Date: Mon, 8 Apr 2024 14:55:53 GMT
- Title: Segmentation Re-thinking Uncertainty Estimation Metrics for Semantic Segmentation
- Authors: Qitian Ma, Shyam Nanda Rai, Carlo Masone, Tatiana Tommasi,
- Abstract summary: semantic segmentation is a fundamental application within machine learning.
The metric known as PAvPU (Patch Accuracy versus Patch Uncertainty) has been developed as a specialized tool for evaluating entropy-based uncertainty in image segmentation tasks.
Our investigation identifies three core deficiencies within the PAvPU framework and proposes robust solutions.
- Score: 12.532289778772185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the domain of computer vision, semantic segmentation emerges as a fundamental application within machine learning, wherein individual pixels of an image are classified into distinct semantic categories. This task transcends traditional accuracy metrics by incorporating uncertainty quantification, a critical measure for assessing the reliability of each segmentation prediction. Such quantification is instrumental in facilitating informed decision-making, particularly in applications where precision is paramount. Within this nuanced framework, the metric known as PAvPU (Patch Accuracy versus Patch Uncertainty) has been developed as a specialized tool for evaluating entropy-based uncertainty in image segmentation tasks. However, our investigation identifies three core deficiencies within the PAvPU framework and proposes robust solutions aimed at refining the metric. By addressing these issues, we aim to enhance the reliability and applicability of uncertainty quantification, especially in scenarios that demand high levels of safety and accuracy, thus contributing to the advancement of semantic segmentation methodologies in critical applications.
Related papers
- Uncertainty and Prediction Quality Estimation for Semantic Segmentation via Graph Neural Networks [4.299840769087443]
We use graph neural networks (GNNs) to model the relationship of a given segment's quality as a function of the given segment's metrics.
We compare different GNN architectures and achieve a notable performance improvement.
arXiv Detail & Related papers (2024-09-17T17:20:21Z) - Progressive Feature Self-reinforcement for Weakly Supervised Semantic
Segmentation [55.69128107473125]
We propose a single-stage approach for Weakly Supervised Semantic (WSSS) with image-level labels.
We adaptively partition the image content into deterministic regions (e.g., confident foreground and background) and uncertain regions (e.g., object boundaries and misclassified categories) for separate processing.
Building upon this, we introduce a complementary self-enhancement method that constrains the semantic consistency between these confident regions and an augmented image with the same class labels.
arXiv Detail & Related papers (2023-12-14T13:21:52Z) - Benchmarking Scalable Epistemic Uncertainty Quantification in Organ
Segmentation [7.313010190714819]
quantifying uncertainty associated with model predictions is crucial in critical clinical applications.
Deep learning based methods for automatic organ segmentation have shown promise in aiding diagnosis and treatment planning.
It is unclear which method is preferred in the medical image analysis setting.
arXiv Detail & Related papers (2023-08-15T00:09:33Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Uncertainty-aware LiDAR Panoptic Segmentation [21.89063036529791]
We introduce a novel approach for solving the task of uncertainty-aware panoptic segmentation using LiDAR point clouds.
Our proposed EvLPSNet network is the first to solve this task efficiently in a sampling-free manner.
We provide several strong baselines combining state-of-the-art panoptic segmentation networks with sampling-free uncertainty estimation techniques.
arXiv Detail & Related papers (2022-10-10T07:54:57Z) - Uncertainty-aware Panoptic Segmentation [21.89063036529791]
We introduce the novel task of uncertainty-aware panoptic segmentation.
It aims to predict per-pixel semantic and instance segmentations, together with per-pixel uncertainty estimates.
We propose the novel top-down Evidential Panoptic Network (EvPSNet) to solve this task.
arXiv Detail & Related papers (2022-06-29T12:07:21Z) - Metrics reloaded: Recommendations for image analysis validation [59.60445111432934]
Metrics Reloaded is a comprehensive framework guiding researchers in the problem-aware selection of metrics.
The framework was developed in a multi-stage Delphi process and is based on the novel concept of a problem fingerprint.
Based on the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics.
arXiv Detail & Related papers (2022-06-03T15:56:51Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Probabilistic Deep Learning for Instance Segmentation [9.62543698736491]
We propose a generic method to obtain model-inherent uncertainty estimates within proposal-free instance segmentation models.
We evaluate our method on the BBBC010 C. elegans dataset, where it yields competitive performance.
arXiv Detail & Related papers (2020-08-24T19:51:48Z) - Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
Learning [70.72363097550483]
In this study, we focus on in-domain uncertainty for image classification.
To provide more insight in this study, we introduce the deep ensemble equivalent score (DEE)
arXiv Detail & Related papers (2020-02-15T23:28:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.