SConU: Selective Conformal Uncertainty in Large Language Models
- URL: http://arxiv.org/abs/2504.14154v1
- Date: Sat, 19 Apr 2025 03:01:45 GMT
- Title: SConU: Selective Conformal Uncertainty in Large Language Models
- Authors: Zhiyuan Wang, Qingni Wang, Yue Zhang, Tianlong Chen, Xiaofeng Zhu, Xiaoshuang Shi, Kaidi Xu,
- Abstract summary: We propose a novel approach termed Selective Conformal Uncertainty (SConU)<n>We develop two conformal p-values that are instrumental in determining whether a given sample deviates from the uncertainty distribution of the calibration set at a specific manageable risk level.<n>Our approach not only facilitates rigorous management of miscoverage rates across both single-domain and interdisciplinary contexts, but also enhances the efficiency of predictions.
- Score: 59.25881667640868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As large language models are increasingly utilized in real-world applications, guarantees of task-specific metrics are essential for their reliable deployment. Previous studies have introduced various criteria of conformal uncertainty grounded in split conformal prediction, which offer user-specified correctness coverage. However, existing frameworks often fail to identify uncertainty data outliers that violate the exchangeability assumption, leading to unbounded miscoverage rates and unactionable prediction sets. In this paper, we propose a novel approach termed Selective Conformal Uncertainty (SConU), which, for the first time, implements significance tests, by developing two conformal p-values that are instrumental in determining whether a given sample deviates from the uncertainty distribution of the calibration set at a specific manageable risk level. Our approach not only facilitates rigorous management of miscoverage rates across both single-domain and interdisciplinary contexts, but also enhances the efficiency of predictions. Furthermore, we comprehensively analyze the components of the conformal procedures, aiming to approximate conditional coverage, particularly in high-stakes question-answering tasks.
Related papers
- Rectifying Conformity Scores for Better Conditional Coverage [75.73184036344908]
We present a new method for generating confidence sets within the split conformal prediction framework.
Our method performs a trainable transformation of any given conformity score to improve conditional coverage while ensuring exact marginal coverage.
arXiv Detail & Related papers (2025-02-22T19:54:14Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.<n>We propose methods tailored to the unique properties of perception and decision-making.<n>We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Generative Conformal Prediction with Vectorized Non-Conformity Scores [6.059745771017814]
Conformal prediction provides model-agnostic uncertainty quantification with guaranteed coverage.<n>We propose a generative conformal prediction framework with vectorized non-conformity scores.<n>We construct adaptive uncertainty sets using density-ranked uncertainty balls.
arXiv Detail & Related papers (2024-10-17T16:37:03Z) - On Information-Theoretic Measures of Predictive Uncertainty [5.8034373350518775]
Despite its significance, a consensus on the correct measurement of predictive uncertainty remains elusive.
Our proposed framework categorizes predictive uncertainty measures according to two factors: (I) The predicting model (II) The approximation of the true predictive distribution.
We empirically evaluate these measures in typical uncertainty estimation settings, such as misclassification detection, selective prediction, and out-of-distribution detection.
arXiv Detail & Related papers (2024-10-14T17:52:18Z) - Beyond Conformal Predictors: Adaptive Conformal Inference with Confidence Predictors [0.0]
Conformal prediction requires exchangeable data to ensure valid prediction sets at a user-specified significance level.
Adaptive conformal inference (ACI) was introduced to address this limitation.
We show that ACI does not require the use of conformal predictors; instead, it can be implemented with the more general confidence predictors.
arXiv Detail & Related papers (2024-09-23T21:02:33Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - ConU: Conformal Uncertainty in Large Language Models with Correctness Coverage Guarantees [68.33498595506941]
We introduce a novel uncertainty measure based on self-consistency theory.
We then develop a conformal uncertainty criterion by integrating the uncertainty condition aligned with correctness into the CP algorithm.
Empirical evaluations indicate that our uncertainty measure outperforms prior state-of-the-art methods.
arXiv Detail & Related papers (2024-06-29T17:33:07Z) - Quantifying Aleatoric and Epistemic Uncertainty with Proper Scoring Rules [19.221081896134567]
Uncertainty representation and quantification are paramount in machine learning.
We propose measures for the quantification of aleatoric and (epistemic) uncertainty based on proper scoring rules.
arXiv Detail & Related papers (2024-04-18T14:20:19Z) - Adaptive Bounding Box Uncertainties via Two-Step Conformal Prediction [44.83236260638115]
We leverage conformal prediction to obtain uncertainty intervals with guaranteed coverage for object bounding boxes.
One challenge in doing so is that bounding box predictions are conditioned on the object's class label.
We develop a novel two-step conformal approach that propagates uncertainty in predicted class labels into the uncertainty intervals of bounding boxes.
arXiv Detail & Related papers (2024-03-12T02:45:24Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Conformal Prediction with Large Language Models for Multi-Choice
Question Answering [7.049780432343948]
We find that the uncertainty estimates from conformal prediction are tightly correlated with prediction accuracy.
This work contributes towards more trustworthy and reliable usage of large language models in safety-critical situations.
arXiv Detail & Related papers (2023-05-28T15:26:10Z) - Bayesian autoencoders with uncertainty quantification: Towards
trustworthy anomaly detection [78.24964622317634]
In this work, the formulation of Bayesian autoencoders (BAEs) is adopted to quantify the total anomaly uncertainty.
To evaluate the quality of uncertainty, we consider the task of classifying anomalies with the additional option of rejecting predictions of high uncertainty.
Our experiments demonstrate the effectiveness of the BAE and total anomaly uncertainty on a set of benchmark datasets and two real datasets for manufacturing.
arXiv Detail & Related papers (2022-02-25T12:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.