論文の概要: A Review of Graph Neural Networks in Epidemic Modeling
- arxiv url: http://arxiv.org/abs/2403.19852v1
- Date: Thu, 28 Mar 2024 21:54:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 17:04:07.352964
- Title: A Review of Graph Neural Networks in Epidemic Modeling
- Title(参考訳): エピデミックモデリングにおけるグラフニューラルネットワークの展望
- Authors: Zewen Liu, Guancheng Wan, B. Aditya Prakash, Max S. Y. Lau, Wei Jin,
- Abstract要約: 新型コロナウイルスのパンデミックが始まって以来、疫学モデルの研究への関心が高まっている。
グラフニューラルネットワーク(GNN)は、疫病研究において徐々に普及しているツールである。
- 参考スコア(独自算出の注目度): 14.28921518883576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since the onset of the COVID-19 pandemic, there has been a growing interest in studying epidemiological models. Traditional mechanistic models mathematically describe the transmission mechanisms of infectious diseases. However, they often fall short when confronted with the growing challenges of today. Consequently, Graph Neural Networks (GNNs) have emerged as a progressively popular tool in epidemic research. In this paper, we endeavor to furnish a comprehensive review of GNNs in epidemic tasks and highlight potential future directions. To accomplish this objective, we introduce hierarchical taxonomies for both epidemic tasks and methodologies, offering a trajectory of development within this domain. For epidemic tasks, we establish a taxonomy akin to those typically employed within the epidemic domain. For methodology, we categorize existing work into \textit{Neural Models} and \textit{Hybrid Models}. Following this, we perform an exhaustive and systematic examination of the methodologies, encompassing both the tasks and their technical details. Furthermore, we discuss the limitations of existing methods from diverse perspectives and systematically propose future research directions. This survey aims to bridge literature gaps and promote the progression of this promising field. We hope that it will facilitate synergies between the communities of GNNs and epidemiology, and contribute to their collective progress.
- Abstract(参考訳): 新型コロナウイルスのパンデミックが始まって以来、疫学モデルの研究への関心が高まっている。
伝統的な力学モデルは、伝染病の伝染機構を数学的に記述する。
しかし、今日の増大する課題に直面すると、しばしば不足する。
結果として、グラフニューラルネットワーク(GNN)は、疫病研究において徐々に人気のあるツールとなっている。
本稿では,感染症対策におけるGNNの総合的な見直しと今後の方向性を明らかにすることを目的とする。
この目的を達成するために,疫学の課題と方法論の両方に階層的な分類を導入し,その領域内での展開の軌跡を提供する。
疫病対策においては、通常、疫病領域で雇用されているものと類似した分類を確立させる。
方法論として、既存の作業は \textit{Neural Models} と \textit{Hybrid Models} に分類する。
次に,本手法の総合的,体系的な検討を行い,課題と技術的詳細の両方を包含する。
さらに,多様な視点から既存手法の限界について考察し,今後の研究方向性を体系的に提案する。
本調査は,文学のギャップを埋め,この将来性のある分野の進展を促進することを目的としている。
我々は,GNNと疫学のコミュニティ間の相乗効果を促進し,その総合的な進歩に寄与することを期待している。
関連論文リスト
- Epidemiology-informed Graph Neural Network for Heterogeneity-aware Epidemic Forecasting [46.63739322178277]
最近の研究では、異種時相の流行パターンを抽出する際の時空間ニューラルネットワーク(STGNN)の強い可能性を示している。
HeatGNNは、疫学的にインフォームドされた場所を、時間とともに自分自身の伝達メカニズムを反映するさまざまな場所に埋め込むことを学ぶ。
HeatGNNは、HeatHeatのさまざまな強力なベースラインを異なるサイズで上回る。
論文 参考訳(メタデータ) (2024-11-26T12:29:45Z) - Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph [14.28921518883576]
持続疾患透過グラフ(EARTH)を用いた疫学対応ニューラル・オードという,革新的なエンドツーエンドフレームワークを提案する。
本稿ではまず,感染メカニズムとニューラルODEアプローチをシームレスに統合するEANOを提案する。
また,グローバルな感染動向をモデル化するためにGLTGを導入し,これらの信号を利用して局所的な感染を動的に誘導する。
論文 参考訳(メタデータ) (2024-09-28T04:07:16Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - MSGNN: Multi-scale Spatio-temporal Graph Neural Network for Epidemic
Forecasting [4.635793210136456]
感染症の予測は重要な焦点であり、疫病の予防に不可欠であることが証明されている。
グラフニューラルネットワーク(GNN)の深さ拡大による受容場の拡大
我々は、革新的なマルチスケールビューに基づいて、マルチスケール時空間グラフニューラルネットワーク(MSGNN)を考案する。
論文 参考訳(メタデータ) (2023-08-30T08:21:56Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
多段階多地域流行予測のための新しいハイブリッドモデルMepoGNNを提案する。
本モデルでは, 確認症例数だけでなく, 疫学的パラメータも明示的に学習できる。
論文 参考訳(メタデータ) (2023-06-26T17:09:43Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - An Extended Epidemic Model on Interconnected Networks for COVID-19 to
Explore the Epidemic Dynamics [2.89591830279936]
パンデミックコントロールは、感染した個人の傾向や影響を捉える疫病モデルを必要とする。
多くのエキサイティングなモデルはこれを実装できるが、実践的な解釈性に欠ける。
本研究は疫学とネットワーク理論を融合し,因果解釈能力を持つ枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-10T06:46:01Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。