論文の概要: Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences
- arxiv url: http://arxiv.org/abs/2403.19871v2
- Date: Mon, 8 Apr 2024 21:52:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 19:08:09.010263
- Title: Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences
- Title(参考訳): Slowly Varying Sequencesによる安定機械学習モデルの訓練に向けて
- Authors: Dimitris Bertsimas, Vassilis Digalakis Jr, Yu Ma, Phevos Paschalidis,
- Abstract要約: 我々は、異なるデータバッチ更新間で機械学習モデルを再学習する問題について、一意に考察する混合整数最適化アルゴリズムを開発した。
本手法は, モデル性能が小さめ, 制御可能な犠牲を負うモデルよりも安定性が強いことを示す。
- 参考スコア(独自算出の注目度): 6.067007470552307
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Retraining machine learning models remains an important task for real-world machine learning model deployment. Existing methods focus largely on greedy approaches to find the best-performing model without considering the stability of trained model structures across different retraining evolutions. In this study, we develop a mixed integer optimization algorithm that holistically considers the problem of retraining machine learning models across different data batch updates. Our method focuses on retaining consistent analytical insights - which is important to model interpretability, ease of implementation, and fostering trust with users - by using custom-defined distance metrics that can be directly incorporated into the optimization problem. Importantly, our method shows stronger stability than greedily trained models with a small, controllable sacrifice in model performance in a real-world production case study. Finally, important analytical insights, as demonstrated using SHAP feature importance, are shown to be consistent across retraining iterations.
- Abstract(参考訳): 機械学習モデルのリトレーニングは、現実の機械学習モデルのデプロイにおいて依然として重要なタスクである。
既存の手法は主に、訓練されたモデル構造の異なる再学習進化に対する安定性を考慮せずに、最高の性能のモデルを見つけるための欲求的なアプローチに焦点を当てている。
本研究では,異なるデータバッチ更新における機械学習モデルの再学習問題について,一意に考察した混合整数最適化アルゴリズムを提案する。
本手法は、最適化問題に直接組み込むことができるカスタム定義距離メトリクスを使用することにより、一貫した分析的洞察(解釈可能性のモデル化、実装の容易さ、ユーザとの信頼の促進)を維持することに焦点を当てる。
重要なことは,本手法は実世界の生産事例研究において,小型で制御可能なモデル性能の犠牲を伴って,厳格に訓練されたモデルよりも強い安定性を示すことである。
最後に、SHAP機能の重要性を実証した重要な分析的洞察は、再学習イテレーション間で一貫性があることが示されている。
関連論文リスト
- Towards Learning Stochastic Population Models by Gradient Descent [0.0]
パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
論文 参考訳(メタデータ) (2024-04-10T14:38:58Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
本稿では、利用可能なデータからシステムダイナミクスを推定し、仮想モデルロールアウトにおけるポリシー最適化を行うモデルベース強化学習アルゴリズムについて考察する。
このアプローチは、実際のシステムで破滅的な失敗を引き起こす可能性のあるモデルエラーを悪用することに対して脆弱である。
D4RLベンチマークの1つのよく校正された自己回帰モデルにより、より良い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-02-05T10:18:15Z) - Maintaining Stability and Plasticity for Predictive Churn Reduction [8.971668467496055]
我々は,累積モデル組合せ (AMC) という解を提案する。
AMCは一般的な手法であり、モデルやデータ特性に応じてそれぞれ独自の利点を持ついくつかの事例を提案する。
論文 参考訳(メタデータ) (2023-05-06T20:56:20Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - End-to-End Weak Supervision [15.125993628007972]
下流モデルを直接学習するためのエンドツーエンドアプローチを提案する。
下流テストセットにおけるエンドモデル性能の観点から,先行作業よりも性能が向上したことを示す。
論文 参考訳(メタデータ) (2021-07-05T19:10:11Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
本研究では,不正確なモデル推定による実データとシミュレーションデータのギャップを埋めて,より良いポリシ最適化を実現する方法について検討する。
本稿では,教師なしモデル適応を導入したモデルベース強化学習フレームワークAMPOを提案する。
提案手法は,一連の連続制御ベンチマークタスクにおけるサンプル効率の観点から,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-10-19T14:19:42Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
現在のモデルに基づく強化学習アプローチでは、単に学習されたブラックボックスシミュレータとしてモデルを使用する。
その微分可能性を利用してモデルをより効果的に活用する方法を示す。
論文 参考訳(メタデータ) (2020-05-16T19:18:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。