論文の概要: Towards Learning Stochastic Population Models by Gradient Descent
- arxiv url: http://arxiv.org/abs/2404.07049v2
- Date: Fri, 28 Jun 2024 13:14:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 21:25:00.691849
- Title: Towards Learning Stochastic Population Models by Gradient Descent
- Title(参考訳): グラディエント老化による確率的人口モデル学習に向けて
- Authors: Justin N. Kreikemeyer, Philipp Andelfinger, Adelinde M. Uhrmacher,
- Abstract要約: パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Increasing effort is put into the development of methods for learning mechanistic models from data. This task entails not only the accurate estimation of parameters but also a suitable model structure. Recent work on the discovery of dynamical systems formulates this problem as a linear equation system. Here, we explore several simulation-based optimization approaches, which allow much greater freedom in the objective formulation and weaker conditions on the available data. We show that even for relatively small stochastic population models, simultaneous estimation of parameters and structure poses major challenges for optimization procedures. Particularly, we investigate the application of the local stochastic gradient descent method, commonly used for training machine learning models. We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty. We give an outlook on how this challenge can be overcome.
- Abstract(参考訳): データからメカニスティックモデルを学習する手法の開発に、さらなる努力が注がれている。
このタスクはパラメータの正確な推定だけでなく、適切なモデル構造も必要です。
力学系の発見に関する最近の研究は、この問題を線形方程式系として定式化している。
そこで本研究では,対象データに対する客観的な定式化とより弱い条件において,より自由度の高いシミュレーションに基づく最適化手法について検討する。
比較的小さな確率的集団モデルであっても,パラメータと構造を同時推定することは,最適化手法の大きな課題であることを示す。
特に,機械学習モデルの学習によく用いられる局所確率勾配勾配法の適用について検討する。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
私たちはこの挑戦がいかに克服できるかを概観する。
関連論文リスト
- Differentiable Calibration of Inexact Stochastic Simulation Models via Kernel Score Minimization [11.955062839855334]
そこで本研究では,勾配降下によるカーネルスコア最小化による出力レベルデータを用いて,シミュレーションモデルの異なる入力パラメータを学習する。
モデル不正確性を考慮した新しい正規化結果を用いて,学習した入力パラメータの不確かさを定量化する。
論文 参考訳(メタデータ) (2024-11-08T04:13:52Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Model-based Policy Optimization using Symbolic World Model [46.42871544295734]
ロボット工学における学習に基づく制御手法の適用は、大きな課題を呈している。
1つは、モデルなし強化学習アルゴリズムがサンプル効率の低い観測データを使用することである。
シンボリック回帰によって生成されるシンボリック表現による遷移ダイナミクスの近似を提案する。
論文 参考訳(メタデータ) (2024-07-18T13:49:21Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Neural Likelihood Approximation for Integer Valued Time Series Data [0.0]
我々は、基礎となるモデルの無条件シミュレーションを用いて訓練できるニューラルな可能性近似を構築した。
本手法は,多くの生態学的および疫学的モデルを用いて推定を行うことにより実証する。
論文 参考訳(メタデータ) (2023-10-19T07:51:39Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
本稿では,制約付きSufficiently Accurateモデル学習手法を提案する。
これはそのような問題の例を示し、いくつかの近似解がいかに近いかという定理を提示する。
近似解の質は、関数のパラメータ化、損失と制約関数の滑らかさ、モデル学習におけるサンプルの数に依存する。
論文 参考訳(メタデータ) (2021-02-11T16:27:31Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Learning Stable Nonparametric Dynamical Systems with Gaussian Process
Regression [9.126353101382607]
データからガウス過程回帰に基づいて非パラメトリックリアプノフ関数を学習する。
非パラメトリック制御Lyapunov関数に基づく名目モデルの安定化は、トレーニングサンプルにおける名目モデルの挙動を変化させるものではないことを証明した。
論文 参考訳(メタデータ) (2020-06-14T11:17:17Z) - Maximum Entropy Model Rollouts: Fast Model Based Policy Optimization
without Compounding Errors [10.906666680425754]
我々は、最大エントロピーモデルロールアウト(MEMR)と呼ばれるダイナスタイルモデルに基づく強化学習アルゴリズムを提案する。
複雑なエラーをなくすために、我々はモデルを使って単一ステップのロールアウトを生成する。
論文 参考訳(メタデータ) (2020-06-08T21:38:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。