論文の概要: Disentangling Racial Phenotypes: Fine-Grained Control of Race-related Facial Phenotype Characteristics
- arxiv url: http://arxiv.org/abs/2403.19897v1
- Date: Fri, 29 Mar 2024 00:36:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 16:54:17.835545
- Title: Disentangling Racial Phenotypes: Fine-Grained Control of Race-related Facial Phenotype Characteristics
- Title(参考訳): 遠心性顔面フェノタイプ:レース関連顔面フェノタイプ特性の微粒化制御
- Authors: Seyma Yucer, Amir Atapour Abarghouei, Noura Al Moubayed, Toby P. Breckon,
- Abstract要約: 顔画像の個々の人種関連表現型属性のきめ細かい制御を可能にする新しいGANフレームワークを提案する。
従来の作業とは異なり、我々のフレームワークは2D画像と関連するパラメータにのみ依存し、レース関連表現型属性に対する最先端の個別制御を実現する。
- 参考スコア(独自算出の注目度): 19.146520823042064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving an effective fine-grained appearance variation over 2D facial images, whilst preserving facial identity, is a challenging task due to the high complexity and entanglement of common 2D facial feature encoding spaces. Despite these challenges, such fine-grained control, by way of disentanglement is a crucial enabler for data-driven racial bias mitigation strategies across multiple automated facial analysis tasks, as it allows to analyse, characterise and synthesise human facial diversity. In this paper, we propose a novel GAN framework to enable fine-grained control over individual race-related phenotype attributes of the facial images. Our framework factors the latent (feature) space into elements that correspond to race-related facial phenotype representations, thereby separating phenotype aspects (e.g. skin, hair colour, nose, eye, mouth shapes), which are notoriously difficult to annotate robustly in real-world facial data. Concurrently, we also introduce a high quality augmented, diverse 2D face image dataset drawn from CelebA-HQ for GAN training. Unlike prior work, our framework only relies upon 2D imagery and related parameters to achieve state-of-the-art individual control over race-related phenotype attributes with improved photo-realistic output.
- Abstract(参考訳): 2次元顔画像に対して効果的なきめ細かな外観変化を達成する一方で、顔のアイデンティティを保ちながら、一般的な2次元顔の特徴符号化空間の複雑さと絡み合いが高いため、難しい課題である。
これらの課題にもかかわらず、このような微粒な制御は、人間の顔の多様性を分析し、特徴付けし、合成できるようにするため、複数の自動化された顔分析タスクにわたる、データ駆動の人種的偏見緩和戦略にとって、決定的な有効性である。
本稿では,顔画像の個々の人種関連表現型属性のきめ細かい制御を可能にする新しいGANフレームワークを提案する。
我々の枠組みは、潜伏した(機能的な)空間を人種関係の表情表現に対応する要素に分解し、現実の顔データにおいて頑健に注釈を付けるのが難しい表現的側面(例えば、肌、髪の色、鼻、目、口形)を分離する。
また,GANトレーニングのためにCelebA-HQから抽出した高品質な2次元顔画像データセットも導入した。
従来の作業とは異なり,本フレームワークは2次元画像と関連するパラメータにのみ依存し,写真実写出力を改良したレース関連表現型属性に対する最先端の個別制御を実現する。
関連論文リスト
- Towards Inclusive Face Recognition Through Synthetic Ethnicity Alteration [11.451395489475647]
我々は、データセットの多様性を高めるために合成顔画像生成法を用いて、民族的変化と肌のトーン修正を探索する。
まず,アジア,黒人,インディアンの3民族を表わすバランスのとれた顔画像データセットを構築し,詳細な分析を行う。
次に、既存のGAN(Generative Adversarial Network-based Image-to-image translation)と多様体学習モデルを用いて、それぞれの民族性を変化させる。
論文 参考訳(メタデータ) (2024-05-02T13:31:09Z) - SDFD: Building a Versatile Synthetic Face Image Dataset with Diverse Attributes [14.966767182001755]
顔の多様性の幅広いスペクトルをキャプチャする合成顔画像データセットを生成する手法を提案する。
具体的には、我々のアプローチは人口統計学とバイオメトリックスを統合するだけでなく、メイクアップ、ヘアスタイル、アクセサリーといった非永続的な特徴も統合しています。
これらのプロンプトは、高品質なリアル画像の包括的なデータセットを生成する際に、最先端のテキスト・ツー・イメージモデルを導く。
論文 参考訳(メタデータ) (2024-04-26T08:51:31Z) - A Generalist FaceX via Learning Unified Facial Representation [77.74407008931486]
FaceXは、多様な顔タスクを同時に処理できる新しい顔ジェネラリストモデルである。
汎用的なFaceXは、一般的な顔編集タスクの精巧なタスク特化モデルと比較して、競争性能が向上する。
論文 参考訳(メタデータ) (2023-12-31T17:41:48Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Measuring Hidden Bias within Face Recognition via Racial Phenotypes [21.74534280021516]
本研究は、顔認識のための顔表現型属性を用いた、代替的な人種的偏見分析手法を提案する。
顔認識タスクにおける属性の個人的影響を調べるための分類的テストケースを提案する。
論文 参考訳(メタデータ) (2021-10-19T10:46:59Z) - Learning Fair Face Representation With Progressive Cross Transformer [79.73754444296213]
フェアフェイス認識のためのプログレッシブクロストランス (PCT) 手法を提案する。
我々は,PCTが最先端FR性能を達成しつつ,顔認識におけるバイアスを軽減することができることを示した。
論文 参考訳(メタデータ) (2021-08-11T01:31:14Z) - Pro-UIGAN: Progressive Face Hallucination from Occluded Thumbnails [53.080403912727604]
Inpainting Generative Adversarial Network, Pro-UIGANを提案する。
顔の形状を利用して、隠された小さな顔の補充とアップサンプリング(8*)を行う。
Pro-UIGANは、HR面を視覚的に満足させ、下流タスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-08-02T02:29:24Z) - Exploring Racial Bias within Face Recognition via per-subject
Adversarially-Enabled Data Augmentation [15.924281804465252]
本稿では,オブジェクト単位のデータセットバランスの実現を目的とした,新たな逆派生データ拡張手法を提案する。
我々の目的は、様々な人種領域にまたがる顔画像を変換することで、合成データセットを自動構築することである。
両面比較では,提案手法が(人種)少数集団の認識性能に与える影響が示唆された。
論文 参考訳(メタデータ) (2020-04-19T19:46:32Z) - Dual-Attention GAN for Large-Pose Face Frontalization [59.689836951934694]
本稿では,フォトリアリスティック顔フロンダル化のためのDA-GAN(Dual-Attention Generative Adversarial Network)を提案する。
具体的には、ローカル機能と長距離依存関係を統合するために、自己アテンションベースのジェネレータが導入された。
顔領域の局所的特徴を強調するために,新しい顔認識に基づく識別器を適用した。
論文 参考訳(メタデータ) (2020-02-17T20:00:56Z) - Face Hallucination with Finishing Touches [65.14864257585835]
本稿では,超解像とフロンティア化を同時に行うVivid Face Hallucination Generative Adversarial Network (VividGAN)を提案する。
VividGANは粗いレベルと細かなレベルのFace Hallucination Networks (FHnet)と、粗いDとファインDの2つの識別器で構成されている。
実験により、VvidGANは、フォトリアリスティックな正面HR面を達成し、下流タスクにおいて優れた性能を達成できることが示された。
論文 参考訳(メタデータ) (2020-02-09T07:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。