Diverse Feature Learning by Self-distillation and Reset
- URL: http://arxiv.org/abs/2403.19941v1
- Date: Fri, 29 Mar 2024 02:49:15 GMT
- Title: Diverse Feature Learning by Self-distillation and Reset
- Authors: Sejik Park,
- Abstract summary: We introduce Diverse Feature Learning (DFL), a method that combines an important feature preservation algorithm with a new feature learning algorithm.
For preserving important features, we utilize self-distillation in ensemble models by selecting the meaningful model weights observed during training.
For learning new features, we employ reset that involves periodically re-initializing part of the model.
- Score: 0.5221459608786241
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our paper addresses the problem of models struggling to learn diverse features, due to either forgetting previously learned features or failing to learn new ones. To overcome this problem, we introduce Diverse Feature Learning (DFL), a method that combines an important feature preservation algorithm with a new feature learning algorithm. Specifically, for preserving important features, we utilize self-distillation in ensemble models by selecting the meaningful model weights observed during training. For learning new features, we employ reset that involves periodically re-initializing part of the model. As a result, through experiments with various models on the image classification, we have identified the potential for synergistic effects between self-distillation and reset.
Related papers
- Efficient Non-Exemplar Class-Incremental Learning with Retrospective Feature Synthesis [21.348252135252412]
Current Non-Exemplar Class-Incremental Learning (NECIL) methods mitigate forgetting by storing a single prototype per class.
We propose a more efficient NECIL method that replaces prototypes with synthesized retrospective features for old classes.
Our method significantly improves the efficiency of non-exemplar class-incremental learning and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-03T07:19:11Z) - Machine Unlearning in Contrastive Learning [3.6218162133579694]
We introduce a novel gradient constraint-based approach for training the model to effectively achieve machine unlearning.
Our approach demonstrates proficient performance not only on contrastive learning models but also on supervised learning models.
arXiv Detail & Related papers (2024-05-12T16:09:01Z) - SRIL: Selective Regularization for Class-Incremental Learning [5.810252620242912]
Class-Incremental Learning aims to create an integrated model that balances plasticity and stability to overcome this challenge.
We propose a selective regularization method that accepts new knowledge while maintaining previous knowledge.
We validate the effectiveness of the proposed method through extensive experimental protocols using CIFAR-100, ImageNet-Subset, and ImageNet-Full.
arXiv Detail & Related papers (2023-05-09T05:04:35Z) - Ensembling improves stability and power of feature selection for deep
learning models [11.973624420202388]
In this paper, we show that inherentity in the design and training of deep learning models makes commonly used feature importance scores unstable.
We explore the ensembling of feature importance scores of models across different epochs and find that this simple approach can substantially address this issue.
We present a framework to combine the feature importance of trained models and instead of selecting features from one best model, we perform an ensemble of feature importance scores from numerous good models.
arXiv Detail & Related papers (2022-10-02T19:07:53Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
Deep neural networks suffer from catastrophic forgetting when learning new categories.
We propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively.
arXiv Detail & Related papers (2022-04-10T11:38:33Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Compositional Fine-Grained Low-Shot Learning [58.53111180904687]
We develop a novel compositional generative model for zero- and few-shot learning to recognize fine-grained classes with a few or no training samples.
We propose a feature composition framework that learns to extract attribute features from training samples and combines them to construct fine-grained features for rare and unseen classes.
arXiv Detail & Related papers (2021-05-21T16:18:24Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Efficient Learning of Model Weights via Changing Features During
Training [0.0]
We propose a machine learning model, which dynamically changes the features during training.
Our main motivation is to update the model in a small content during the training process with replacing less descriptive features to new ones from a large pool.
arXiv Detail & Related papers (2020-02-21T12:38:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.