論文の概要: Large Language Model based Situational Dialogues for Second Language Learning
- arxiv url: http://arxiv.org/abs/2403.20005v1
- Date: Fri, 29 Mar 2024 06:43:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 16:24:57.521143
- Title: Large Language Model based Situational Dialogues for Second Language Learning
- Title(参考訳): 第二言語学習のための大規模言語モデルに基づく状況対話
- Authors: Shuyao Xu, Long Qin, Tianyang Chen, Zhenzhou Zha, Bingxue Qiu, Weizhi Wang,
- Abstract要約: 第二言語学習において、シナリオベースの会話実践は、言語学習者が話し言葉の流布を達成するために重要である。
このギャップを埋めるために,学生が会話の実践を行うための状況対話モデルを提案する。
我々の状況対話モデルは大規模言語モデル(LLM)に基づいて微調整されており、オープンエンド会話の係り受け性とシナリオベースタスクの焦点を合わせることを目的としている。
- 参考スコア(独自算出の注目度): 7.450328495455734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In second language learning, scenario-based conversation practice is important for language learners to achieve fluency in speaking, but students often lack sufficient opportunities to practice their conversational skills with qualified instructors or native speakers. To bridge this gap, we propose situational dialogue models for students to engage in conversational practice. Our situational dialogue models are fine-tuned on large language models (LLMs), with the aim of combining the engaging nature of an open-ended conversation with the focused practice of scenario-based tasks. Leveraging the generalization capabilities of LLMs, we demonstrate that our situational dialogue models perform effectively not only on training topics but also on topics not encountered during training. This offers a promising solution to support a wide range of conversational topics without extensive manual work. Additionally, research in the field of dialogue systems still lacks reliable automatic evaluation metrics, leading to human evaluation as the gold standard (Smith et al., 2022), which is typically expensive. To address the limitations of existing evaluation methods, we present a novel automatic evaluation method that employs fine-tuned LLMs to efficiently and effectively assess the performance of situational dialogue models.
- Abstract(参考訳): 第二言語学習において、シナリオベースの会話実践は、言語学習者が話し言葉を流用する上で重要であるが、学生は、適格なインストラクターやネイティブスピーカーで会話スキルを実践する十分な機会を欠くことが多い。
このギャップを埋めるために,学生が会話の実践を行うための状況対話モデルを提案する。
我々の状況対話モデルは大規模言語モデル(LLM)に基づいて微調整されており、オープンエンド会話の係り受け性とシナリオベースタスクの焦点を合わせることを目的としている。
LLMの一般化機能を活用して、我々の状況対話モデルは、トレーニングトピックだけでなく、トレーニング中に遭遇しないトピックに対しても効果的に機能することを示した。
これは、広範囲な手作業なしに幅広い会話トピックをサポートする、有望なソリューションを提供する。
さらに、対話システム分野の研究には信頼性の高い自動評価指標が欠けており、一般的に高価である金本位制(Smith et al , 2022)としての人間の評価につながっている。
既存の評価手法の限界に対処するため, 微調整LDMを用いて, 状況対話モデルの性能を効率よく, 効果的に評価する新しい自動評価手法を提案する。
関連論文リスト
- FutureTOD: Teaching Future Knowledge to Pre-trained Language Model for
Task-Oriented Dialogue [20.79359173822053]
本稿では,対話前学習モデルFutureTODを提案する。
我々の直感は、良い対話表現はどちらも局所的な文脈情報を学び、将来の情報を予測することである。
論文 参考訳(メタデータ) (2023-06-17T10:40:07Z) - Opportunities and Challenges in Neural Dialog Tutoring [54.07241332881601]
言語学習のための2つの対話学習データセットを用いて、様々な生成言語モデルを厳密に分析する。
現在のアプローチでは、制約のある学習シナリオでチューリングをモデル化できますが、制約の少ないシナリオではパフォーマンスが悪くなります。
人的品質評価では, モデルと接地木アノテーションの両方が, 同等のチュータリングの点で低い性能を示した。
論文 参考訳(メタデータ) (2023-01-24T11:00:17Z) - Effectiveness of French Language Models on Abstractive Dialogue
Summarization Task [5.556906034471034]
本稿では,複数の言語固有の事前学習モデルを用いて,フランス語における自発的口頭対話の要約について検討する。
以上の結果から,BARThezモデルは従来のDECDAの最先端モデルよりもはるかに優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-17T21:43:18Z) - Building a Personalized Dialogue System with Prompt-Tuning [5.942602139622984]
与えられた文字設定(ペルソナ)に基づいて応答する対話システムを構築する。
本稿では,事前学習された大規模言語モデルに対して,学習コストの低いプロンプトチューニングを利用する手法を提案する。
論文 参考訳(メタデータ) (2022-06-11T02:21:11Z) - Response Generation with Context-Aware Prompt Learning [19.340498579331555]
本稿では,対話生成問題を素早い学習課題とする,事前学習型対話モデリングのための新しい手法を提案する。
限られた対話データを微調整する代わりに、我々のアプローチであるDialogPromptは、対話コンテキストに最適化された連続的なプロンプト埋め込みを学習する。
提案手法は,微調整ベースラインと汎用的なプロンプト学習法を著しく上回っている。
論文 参考訳(メタデータ) (2021-11-04T05:40:13Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
自然言語を理解し、人間と対話するための訓練機械は、人工知能の解明と本質的なタスクである。
本稿では,対話理解タスクにおける対話モデリングの技術的視点から,過去の手法を概観する。
さらに,対話シナリオにおけるPrLMの強化に使用される対話関連事前学習手法を分類する。
論文 参考訳(メタデータ) (2021-10-11T03:52:37Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
本研究は、音声タスク指向会話における新しいベンチマークを示す。
マルチドメイン対話状態追跡と知識基底型対話モデルについて検討する。
我々のデータセットは,タスク指向対話システムの音声によるベンチマークを可能にする。
論文 参考訳(メタデータ) (2021-09-28T04:51:04Z) - Structural Pre-training for Dialogue Comprehension [51.215629336320305]
本稿では,SPIDER, Structure Pre-trained DialoguE Readerについて述べる。
対話のような特徴をシミュレートするために,元のLM目的に加えて,2つの訓練目標を提案する。
広く使われている対話ベンチマークの実験結果から,新たに導入した自己教師型タスクの有効性が検証された。
論文 参考訳(メタデータ) (2021-05-23T15:16:54Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
対話モデリングの観点から,従来の手法を検討した。
対話理解タスクで広く使用されている対話モデリングの3つの典型的なパターンについて議論します。
論文 参考訳(メタデータ) (2021-03-04T15:50:17Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
本研究では,言語モデリングのためのタスク指向対話データセットを,人間とマルチターンの9つに統合する。
事前学習時の対話動作をモデル化するために,ユーザトークンとシステムトークンをマスク付き言語モデルに組み込む。
論文 参考訳(メタデータ) (2020-04-15T04:09:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。