論文の概要: A novel decision fusion approach for sale price prediction using Elastic Net and MOPSO
- arxiv url: http://arxiv.org/abs/2403.20033v1
- Date: Fri, 29 Mar 2024 07:59:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 16:15:12.240976
- Title: A novel decision fusion approach for sale price prediction using Elastic Net and MOPSO
- Title(参考訳): Elastic Net と MOPSO を用いた価格予測のための新しい決定融合手法
- Authors: Amir Eshaghi Chaleshtori,
- Abstract要約: 価格予測アルゴリズムは、市場動向、予測された需要、その他の特性に応じて、すべての製品またはサービスの価格を提案する。
価格予測における依存変数として、いくつかの独立変数および相関変数に影響される。
本研究では,価格予測において情報変数を選択するための新たな意思決定レベル融合手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Price prediction algorithms propose prices for every product or service according to market trends, projected demand, and other characteristics, including government rules, international transactions, and speculation and expectation. As the dependent variable in price prediction, it is affected by several independent and correlated variables which may challenge the price prediction. To overcome this challenge, machine learning algorithms allow more accurate price prediction without explicitly modeling the relatedness between variables. However, as inputs increase, it challenges the existing machine learning approaches regarding computing efficiency and prediction effectiveness. Hence, this study introduces a novel decision level fusion approach to select informative variables in price prediction. The suggested metaheuristic algorithm balances two competitive objective functions, which are defined to improve the prediction utilized variables and reduce the error rate simultaneously. To generate Pareto optimal solutions, an Elastic net approach is employed to eliminate unrelated and redundant variables to increase the accuracy. Afterward, we propose a novel method for combining solutions and ensuring that a subset of features is optimal. Two various real datasets evaluate the proposed price prediction method. The results support the suggested superiority of the model concerning its relative root mean square error and adjusted correlation coefficient.
- Abstract(参考訳): 価格予測アルゴリズムは、市場動向、需要予測、政府規則、国際取引、投機と予測などの特性に応じて、すべての製品またはサービスの価格を提案する。
物価予測における依存変数として、物価予測に挑戦する可能性のあるいくつかの独立変数および相関変数に影響される。
この課題を克服するために、機械学習アルゴリズムは変数間の関連性を明示的にモデル化することなく、より正確な価格予測を可能にする。
しかし、入力が増加するにつれて、計算効率と予測効率に関する既存の機械学習アプローチに挑戦する。
そこで本研究では,価格予測において情報変数を選択するための新たな意思決定レベル融合手法を提案する。
提案したメタヒューリスティックアルゴリズムは、2つの競合対象関数のバランスを保ち、この関数は利用変数の予測を改善し、同時にエラー率を減少させる。
Paretoの最適解を生成するために、Elastic netアプローチを用いて無関係で冗長な変数を排除し、精度を高める。
その後、我々は、解を結合し、特徴のサブセットが最適であることを保証する新しい方法を提案する。
2つの実データセットが提案した価格予測手法を評価する。
その結果, 相対根平均二乗誤差と補正相関係数に関して, モデルが提案する優越性を支持した。
関連論文リスト
- Deep Generative Demand Learning for Newsvendor and Pricing [7.594251468240168]
我々は、機能ベースのニュースベンダ問題において、データ駆動の在庫と価格決定について検討する。
本稿では,これらの課題に対処するために条件付き深層生成モデル(cDGM)を活用する新しいアプローチを提案する。
我々は、利益予測の整合性や最適解への決定の収束など、我々のアプローチに対する理論的保証を提供する。
論文 参考訳(メタデータ) (2024-11-13T14:17:26Z) - Semiparametric conformal prediction [79.6147286161434]
リスクに敏感なアプリケーションは、複数の、潜在的に相関したターゲット変数に対して、よく校正された予測セットを必要とする。
スコアをランダムなベクトルとして扱い、それらの連接関係構造を考慮した予測セットを構築することを目的とする。
実世界のレグレッション問題に対して,所望のカバレッジと競争効率について報告する。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - Learning Solutions of Stochastic Optimization Problems with Bayesian Neural Networks [4.202961704179733]
多くの実世界の設定において、これらのパラメータのいくつかは未知または不確かである。
最近の研究は、利用可能なコンテキスト特徴を用いて未知のパラメータの値を予測することに焦点を当てている。
本稿では、不確実性ニューラルネットワーク(BNN)をモデル化し、この不確実性を数学的解法に伝達する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-06-05T09:11:46Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Causal Forecasting for Pricing [7.077353694086149]
本稿では,価格の文脈で需要予測を行う新しい手法を提案する。
我々の手法は、因果推論のためのダブル機械学習手法と、最先端のトランスフォーマーに基づく予測モデルを組み合わせたものである。
論文 参考訳(メタデータ) (2023-12-23T15:38:22Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Calibrating Predictions to Decisions: A Novel Approach to Multi-Class
Calibration [118.26862029820447]
我々は、下流の意思決定者に対して、予測された分布と真の分布を区別不能にする必要がある新しい概念、即時校正を導入します。
決定キャリブレーションは、皮膚病変の判定と、現代のニューラルネットワークを用いたImageNet分類を改善する。
論文 参考訳(メタデータ) (2021-07-12T20:17:28Z) - Markdowns in E-Commerce Fresh Retail: A Counterfactual Prediction and
Multi-Period Optimization Approach [29.11201102550876]
半パラメトリック構造モデルを構築し、価格の弾力性を学習し、対物需要を予測する。
本稿では,有限販売地平線上での消耗品全体の利益を最大化するために,多周期動的価格アルゴリズムを提案する。
提案されたフレームワークは、よく知られたeコマースの新鮮な小売シナリオであるFreshippoにうまくデプロイされている。
論文 参考訳(メタデータ) (2021-05-18T07:01:37Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。