論文の概要: Deep Generative Demand Learning for Newsvendor and Pricing
- arxiv url: http://arxiv.org/abs/2411.08631v1
- Date: Wed, 13 Nov 2024 14:17:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:08:58.414822
- Title: Deep Generative Demand Learning for Newsvendor and Pricing
- Title(参考訳): ニューズベンダーと価格の深層的需要学習
- Authors: Shijin Gong, Huihang Liu, Xinyu Zhang,
- Abstract要約: 我々は、機能ベースのニュースベンダ問題において、データ駆動の在庫と価格決定について検討する。
本稿では,これらの課題に対処するために条件付き深層生成モデル(cDGM)を活用する新しいアプローチを提案する。
我々は、利益予測の整合性や最適解への決定の収束など、我々のアプローチに対する理論的保証を提供する。
- 参考スコア(独自算出の注目度): 7.594251468240168
- License:
- Abstract: We consider data-driven inventory and pricing decisions in the feature-based newsvendor problem, where demand is influenced by both price and contextual features and is modeled without any structural assumptions. The unknown demand distribution results in a challenging conditional stochastic optimization problem, further complicated by decision-dependent uncertainty and the integration of features. Inspired by recent advances in deep generative learning, we propose a novel approach leveraging conditional deep generative models (cDGMs) to address these challenges. cDGMs learn the demand distribution and generate probabilistic demand forecasts conditioned on price and features. This generative approach enables accurate profit estimation and supports the design of algorithms for two key objectives: (1) optimizing inventory for arbitrary prices, and (2) jointly determining optimal pricing and inventory levels. We provide theoretical guarantees for our approach, including the consistency of profit estimation and convergence of our decisions to the optimal solution. Extensive simulations-ranging from simple to complex scenarios, including one involving textual features-and a real-world case study demonstrate the effectiveness of our approach. Our method opens a new paradigm in management science and operations research, is adaptable to extensions of the newsvendor and pricing problems, and holds potential for solving other conditional stochastic optimization problems.
- Abstract(参考訳): 機能ベースのニュースベンダ問題では,需要は価格とコンテキストの両方の特徴に影響され,構造的な仮定を伴わずにモデル化される。
未知の需要分布は、決定依存の不確実性や特徴の統合によってさらに複雑になる条件確率最適化問題をもたらす。
近年の深層生成学習の進歩に触発されて,条件付き深層生成モデル(cDGM)を活用した新しいアプローチを提案する。
cDGMは需要分布を学習し、価格と特徴に応じて確率的需要予測を生成する。
この生成手法は, 正確な利益推定を可能にし, 1) 任意の価格に対する在庫の最適化, (2) 最適価格と在庫水準を共同で決定するアルゴリズムの設計を支援する。
我々は、利益予測の整合性や最適解への決定の収束など、我々のアプローチに対する理論的保証を提供する。
テキスト機能を含むシナリオや実世界のケーススタディなど、単純なシナリオから複雑なシナリオまで、広範囲にわたるシミュレーションが、我々のアプローチの有効性を実証している。
本手法は,経営科学・運用研究の新たなパラダイムを開拓し,ニュースベンダの拡張や価格問題に適応し,他の条件付き確率最適化問題を解く可能性を秘めている。
関連論文リスト
- Dual-Agent Deep Reinforcement Learning for Dynamic Pricing and Replenishment [15.273192037219077]
不整合決定周波数下での動的価格設定と補充問題について検討する。
我々は、包括的な市場データに基づいてトレーニングされた決定木に基づく機械学習アプローチを統合する。
このアプローチでは、2つのエージェントが価格と在庫を処理し、さまざまなスケールで更新される。
論文 参考訳(メタデータ) (2024-10-28T15:12:04Z) - Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
モデルシフトに対する反ファクトの堅牢性を計算することはNP完全であることを示す。
本稿では,頑健性の厳密な推定を高い保証で実現する新しい確率論的手法を提案する。
論文 参考訳(メタデータ) (2024-07-10T09:13:11Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
制約付きオンライン学習問題に対する既存の原始双対アルゴリズムは、2つの基本的な仮定に依存している。
このような仮定は、標準の原始双対テンプレートを弱適応的後悔最小化器で与えることによって、どのように回避できるのかを示す。
上記の2つの前提が満たされていない場合に保証される、世界の最高の保証を証明します。
論文 参考訳(メタデータ) (2023-02-02T16:30:33Z) - Product Segmentation Newsvendor Problems: A Robust Learning Approach [6.346881818701668]
商品セグメンテーションニューズベンダー問題は、ニューズベンダー問題の新たな変種である。
本稿では、ロバストな政策の魅力を高めるために、ロバストな学習という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2022-07-08T10:13:10Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
我々は、強化学習を通して解決された逐次決定問題(MDP)の文脈における予測列最適化フレームワークについて検討した。
2つの重要な計算課題は、意思決定中心の学習をMDPに適用することである。
論文 参考訳(メタデータ) (2021-06-06T23:53:31Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Heuristic Strategies for Solving Complex Interacting Stockpile Blending
Problem with Chance Constraints [14.352521012951865]
本稿では,材料グレードの不確実性について考察し,信頼性の高い制約を確実にするために使用される確率制約を導入する。
ストックパイルブレンディング問題と確率制約に対処するため, 2つの補修演算子を組み合わせた微分進化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-10T07:56:18Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Uncertainty Quantification for Demand Prediction in Contextual Dynamic
Pricing [20.828160401904697]
本研究では,需要関数に対する精度の高い信頼区間構築の問題について検討する。
偏りのあるアプローチを開発し、偏りのある推定器の正規性を保証する。
論文 参考訳(メタデータ) (2020-03-16T04:21:58Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
深層強化学習を用いたコスト依存型ポートフォリオ選択手法を提案する。
具体的には、価格系列パターンと資産相関の両方を抽出するために、新しい2ストリームポートフォリオポリシーネットワークを考案した。
蓄積したリターンを最大化し、強化学習によるコストの両立を抑えるため、新たなコスト感受性報酬関数が開発された。
論文 参考訳(メタデータ) (2020-03-06T06:28:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。