Segmentation, Classification and Interpretation of Breast Cancer Medical Images using Human-in-the-Loop Machine Learning
- URL: http://arxiv.org/abs/2403.20112v1
- Date: Fri, 29 Mar 2024 10:49:02 GMT
- Title: Segmentation, Classification and Interpretation of Breast Cancer Medical Images using Human-in-the-Loop Machine Learning
- Authors: David Vázquez-Lema, Eduardo Mosqueira-Rey, Elena Hernández-Pereira, Carlos Fernández-Lozano, Fernando Seara-Romera, Jorge Pombo-Otero,
- Abstract summary: The paper deals with the integration of genomic data and Whole Slide Imaging (WSI) analysis of breast cancer.
The involvement of a pathologist helped us to develop a better segmentation model and to enhance the explainatory capabilities of the models, but the classification results were suboptimal.
- Score: 37.69303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the application of Human-in-the-Loop (HITL) strategies in training machine learning models in the medical domain. In this case a doctor-in-the-loop approach is proposed to leverage human expertise in dealing with large and complex data. Specifically, the paper deals with the integration of genomic data and Whole Slide Imaging (WSI) analysis of breast cancer. Three different tasks were developed: segmentation of histopathological images, classification of this images regarding the genomic subtype of the cancer and, finally, interpretation of the machine learning results. The involvement of a pathologist helped us to develop a better segmentation model and to enhance the explainatory capabilities of the models, but the classification results were suboptimal, highlighting the limitations of this approach: despite involving human experts, complex domains can still pose challenges, and a HITL approach may not always be effective.
Related papers
- HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGym aims to foster whole slide image diagnosis by mimicking the real-life processes of doctors.
We offer various scenarios for different organs and cancers, including both WSI-based and selected region-based scenarios.
arXiv Detail & Related papers (2024-08-16T17:19:07Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.
A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.
This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
We investigate the use of four attribution methods to explain a multiple instance learning models.
We study two datasets of acute myeloid leukemia with over 100 000 single cell images.
We compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard.
arXiv Detail & Related papers (2023-03-15T14:00:11Z) - Global Contrast Masked Autoencoders Are Powerful Pathological
Representation Learners [11.162001837248166]
We propose a self-supervised learning model, the global contrast-masked autoencoder (GCMAE), which can train the encoder to have the ability to represent local-global features of pathological images.
The ability of the GCMAE to learn migratable representations was demonstrated through extensive experiments using a total of three different disease-specific hematoxylin and eosin (HE)-stained pathology datasets.
arXiv Detail & Related papers (2022-05-18T16:28:56Z) - Automated risk classification of colon biopsies based on semantic
segmentation of histopathology images [4.144141972397873]
We present an approach to address two major challenges in automated assessment of colorectal histopathology whole-slide images.
First, we present an AI-based method to segment multiple tissue compartments in the H&E-stained whole-slide image.
Second, we use the best performing AI model as the basis for a computer-aided diagnosis system.
arXiv Detail & Related papers (2021-09-16T11:50:10Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Machine Learning Methods for Histopathological Image Analysis: A Review [62.14548392474976]
Histopathological images (HIs) are the gold standard for evaluating some types of tumors for cancer diagnosis.
One of the ways of accelerating such an analysis is to use computer-aided diagnosis (CAD) systems.
arXiv Detail & Related papers (2021-02-07T19:12:32Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.