論文の概要: StegoGAN: Leveraging Steganography for Non-Bijective Image-to-Image Translation
- arxiv url: http://arxiv.org/abs/2403.20142v1
- Date: Fri, 29 Mar 2024 12:23:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 15:44:18.837676
- Title: StegoGAN: Leveraging Steganography for Non-Bijective Image-to-Image Translation
- Title(参考訳): StegoGAN:非目的画像変換のためのステガノグラフィの活用
- Authors: Sidi Wu, Yizi Chen, Samuel Mermet, Lorenz Hurni, Konrad Schindler, Nicolas Gonthier, Loic Landrieu,
- Abstract要約: CycleGANベースの手法は、生成した画像のミスマッチした情報を隠して、サイクル一貫性の目的をバイパスすることが知られている。
本稿では,ステガノグラフィーを利用した新しいモデルであるStegoGANを紹介した。
我々のアプローチは、追加の後処理や監督を必要とすることなく、翻訳画像のセマンティック一貫性を高める。
- 参考スコア(独自算出の注目度): 18.213286385769525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most image-to-image translation models postulate that a unique correspondence exists between the semantic classes of the source and target domains. However, this assumption does not always hold in real-world scenarios due to divergent distributions, different class sets, and asymmetrical information representation. As conventional GANs attempt to generate images that match the distribution of the target domain, they may hallucinate spurious instances of classes absent from the source domain, thereby diminishing the usefulness and reliability of translated images. CycleGAN-based methods are also known to hide the mismatched information in the generated images to bypass cycle consistency objectives, a process known as steganography. In response to the challenge of non-bijective image translation, we introduce StegoGAN, a novel model that leverages steganography to prevent spurious features in generated images. Our approach enhances the semantic consistency of the translated images without requiring additional postprocessing or supervision. Our experimental evaluations demonstrate that StegoGAN outperforms existing GAN-based models across various non-bijective image-to-image translation tasks, both qualitatively and quantitatively. Our code and pretrained models are accessible at https://github.com/sian-wusidi/StegoGAN.
- Abstract(参考訳): ほとんどの画像から画像への変換モデルは、ソースとターゲットドメインのセマンティッククラスの間にユニークな対応があることを仮定している。
しかし、この仮定は、分散分布、異なるクラス集合、および非対称情報表現によって、現実のシナリオにおいて常に成り立つわけではない。
従来のGANは、対象領域の分布に一致した画像を生成するため、ソース領域から欠落したクラスの急激なインスタンスを幻覚させ、翻訳画像の有用性と信頼性を低下させる可能性がある。
CycleGANベースの手法は、生成した画像のミスマッチした情報を隠して、サイクル整合性(steganography)と呼ばれるプロセスをバイパスすることが知られている。
本研究では,非客観的画像翻訳の課題に応えて,ステガノグラフィーを応用して生成画像の突発的特徴を防止する新しいモデルであるStegoGANを紹介する。
我々のアプローチは、追加の後処理や監督を必要とすることなく、翻訳画像のセマンティック一貫性を高める。
実験により,StegoGANは既存のGANモデルよりも質的にも定量的にも,様々な非客観的な画像から画像への翻訳作業に優れることが示された。
私たちのコードと事前訓練されたモデルはhttps://github.com/sian-wusidi/StegoGAN.comでアクセスできます。
関連論文リスト
- SCONE-GAN: Semantic Contrastive learning-based Generative Adversarial
Network for an end-to-end image translation [18.93434486338439]
SCONE-GANはリアルで多様な風景画像を生成する学習に有効であることが示されている。
より現実的で多様な画像生成のために、スタイル参照画像を導入します。
画像から画像への変換と屋外画像のスタイリングのための提案アルゴリズムを検証した。
論文 参考訳(メタデータ) (2023-11-07T10:29:16Z) - Improving Diversity in Zero-Shot GAN Adaptation with Semantic Variations [61.132408427908175]
0ショットのGAN適応は、よく訓練されたジェネレータを再利用して、目に見えないターゲットドメインの画像を合成することを目的としている。
実際の画像の代わりに1つの代表的テキスト機能しか持たないため、合成された画像は徐々に多様性を損なう。
そこで本研究では,CLIP空間における対象テキストの意味的変化を見つけるための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T08:12:28Z) - Improving Diffusion-based Image Translation using Asymmetric Gradient
Guidance [51.188396199083336]
非対称勾配法の適用により拡散サンプリングの逆過程を導出する手法を提案する。
我々のモデルの適応性は、画像融合モデルと潜時拡散モデルの両方で実装できる。
実験により,本手法は画像翻訳タスクにおいて,様々な最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-06-07T12:56:56Z) - Conditional Score Guidance for Text-Driven Image-to-Image Translation [52.73564644268749]
本稿では,事前訓練されたテキスト・画像拡散モデルに基づく,テキスト駆動型画像・画像変換のための新しいアルゴリズムを提案する。
本手法は,ソース画像の関心領域を選択的に編集することで,対象画像を生成することを目的とする。
論文 参考訳(メタデータ) (2023-05-29T10:48:34Z) - Wavelet-based Unsupervised Label-to-Image Translation [9.339522647331334]
本稿では、自己教師付きセグメンテーション損失と全画像ウェーブレットに基づく識別を併用した、SIS(USIS)のための新しいアン教師付きパラダイムを提案する。
3つの挑戦的なデータセットで方法論を検証し、ペアモデルとアンペアモデルのパフォーマンスギャップを橋渡しする能力を実証する。
論文 参考訳(メタデータ) (2023-05-16T17:48:44Z) - Domain Agnostic Image-to-image Translation using Low-Resolution
Conditioning [6.470760375991825]
ドメインが関係するきめ細かい問題に対して,ドメインに依存しないi2i法を提案する。
本稿では、生成モデルを訓練し、関連するソース画像の固有情報を共有する画像を生成する新しいアプローチを提案する。
CelebA-HQ と AFHQ のデータセット上で,視覚的品質の向上を実証し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-05-08T19:58:49Z) - Diffusion Visual Counterfactual Explanations [51.077318228247925]
VCE(Visual Counterfactual Explanations)は、画像の決定を理解するための重要なツールである。
VCEの生成に対する現在のアプローチは、逆向きに堅牢なモデルに制限されており、しばしば非現実的なアーティファクトを含んでいる。
本稿では、任意のイメージネット分類器に対して、視覚拡散対実説明(DVCE)を生成することでこれを克服する。
論文 参考訳(メタデータ) (2022-10-21T09:35:47Z) - Diffusion-based Image Translation using Disentangled Style and Content
Representation [51.188396199083336]
セマンティックテキストや単一のターゲット画像でガイドされた拡散ベースの画像変換により、柔軟なスタイル変換が可能になった。
逆拡散中、画像の原内容を維持することはしばしば困難である。
本稿では,不整合スタイルとコンテンツ表現を用いた新しい拡散に基づく教師なし画像翻訳手法を提案する。
提案手法は,テキスト誘導と画像誘導の両方の翻訳作業において,最先端のベースラインモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-30T06:44:37Z) - Unsupervised Image-to-Image Translation with Generative Prior [103.54337984566877]
教師なし画像画像変換は、ペアデータなしで2つの視覚領域間の翻訳を学習することを目的としている。
本稿では,GP-UNIT(Generative Prior-guided UN Image-to-image Translation)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-07T17:59:23Z) - On the Role of Receptive Field in Unsupervised Sim-to-Real Image
Translation [4.664495510551647]
GAN(Generative Adversarial Networks)は、フォトリアリスティック画像合成に広く利用されている。
GANは、画像が1つのドメインからもう1つのドメインに変換されるため、セマンティックコンテンツ保持の失敗に影響を受けやすい。
本稿では,不一致データを用いた教師なし画像と画像の翻訳における識別器の受容領域の役割について検討する。
論文 参考訳(メタデータ) (2020-01-25T03:02:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。