HARMamba: Efficient and Lightweight Wearable Sensor Human Activity Recognition Based on Bidirectional Mamba
- URL: http://arxiv.org/abs/2403.20183v3
- Date: Thu, 8 Aug 2024 09:40:10 GMT
- Title: HARMamba: Efficient and Lightweight Wearable Sensor Human Activity Recognition Based on Bidirectional Mamba
- Authors: Shuangjian Li, Tao Zhu, Furong Duan, Liming Chen, Huansheng Ning, Christopher Nugent, Yaping Wan,
- Abstract summary: Wearable sensor-based human activity recognition (HAR) is a critical research domain in activity perception.
This study introduces HARMamba, an innovative light-weight and versatile HAR architecture that combines selective bidirectional State Spaces Model and hardware-aware design.
HarMamba outperforms contemporary state-of-the-art frameworks, delivering comparable or better accuracy with significantly reducing computational and memory demands.
- Score: 7.412537185607976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wearable sensor-based human activity recognition (HAR) is a critical research domain in activity perception. However, achieving high efficiency and long sequence recognition remains a challenge. Despite the extensive investigation of temporal deep learning models, such as CNNs, RNNs, and transformers, their extensive parameters often pose significant computational and memory constraints, rendering them less suitable for resource-constrained mobile health applications. This study introduces HARMamba, an innovative light-weight and versatile HAR architecture that combines selective bidirectional State Spaces Model and hardware-aware design. To optimize real-time resource consumption in practical scenarios, HARMamba employs linear recursive mechanisms and parameter discretization, allowing it to selectively focus on relevant input sequences while efficiently fusing scan and recompute operations. The model employs independent channels to process sensor data streams, dividing each channel into patches and appending classification tokens to the end of the sequence. It utilizes position embedding to represent the sequence order. The patch sequence is subsequently processed by HARMamba Block, and the classification head finally outputs the activity category. The HARMamba Block serves as the fundamental component of the HARMamba architecture, enabling the effective capture of more discriminative activity sequence features. HARMamba outperforms contemporary state-of-the-art frameworks, delivering comparable or better accuracy with significantly reducing computational and memory demands. It's effectiveness has been extensively validated on 4 publically available datasets namely PAMAP2, WISDM, UNIMIB SHAR and UCI. The F1 scores of HARMamba on the four datasets are 99.74%, 99.20%, 88.23% and 97.01%, respectively.
Related papers
- Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - Mamba-Spike: Enhancing the Mamba Architecture with a Spiking Front-End for Efficient Temporal Data Processing [4.673285689826945]
Mamba-Spike is a novel neuromorphic architecture that integrates a spiking front-end with the Mamba backbone to achieve efficient temporal data processing.
The architecture consistently outperforms state-of-the-art baselines, achieving higher accuracy, lower latency, and improved energy efficiency.
arXiv Detail & Related papers (2024-08-04T14:10:33Z) - Initial Investigation of Kolmogorov-Arnold Networks (KANs) as Feature Extractors for IMU Based Human Activity Recognition [5.067238125081022]
We implement KAN as the feature extraction architecture for IMU-based human activity recognition tasks.
We present an initial performance investigation of the KAN-based feature extractor on four public HAR datasets.
arXiv Detail & Related papers (2024-06-16T19:56:03Z) - HSIMamba: Hyperpsectral Imaging Efficient Feature Learning with Bidirectional State Space for Classification [16.742768644585684]
HSIMamba is a novel framework that uses bidirectional reversed convolutional neural network pathways to extract spectral features more efficiently.
Our approach combines the operational efficiency of CNNs with the dynamic feature extraction capability of attention mechanisms found in Transformers.
This approach improves classification accuracy beyond current benchmarks and addresses computational inefficiencies encountered with advanced models like Transformers.
arXiv Detail & Related papers (2024-03-30T07:27:36Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - UMSNet: An Universal Multi-sensor Network for Human Activity Recognition [10.952666953066542]
This paper proposes a universal multi-sensor network (UMSNet) for human activity recognition.
In particular, we propose a new lightweight sensor residual block (called LSR block), which improves the performance.
Our framework has a clear structure and can be directly applied to various types of multi-modal Time Series Classification tasks.
arXiv Detail & Related papers (2022-05-24T03:29:54Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Human Activity Recognition using Attribute-Based Neural Networks and
Context Information [61.67246055629366]
We consider human activity recognition (HAR) from wearable sensor data in manual-work processes.
We show how context information can be integrated systematically into a deep neural network-based HAR system.
We empirically show that our proposed architecture increases HAR performance, compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-10-28T06:08:25Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Automated Human Activity Recognition by Colliding Bodies
Optimization-based Optimal Feature Selection with Recurrent Neural Network [0.0]
Human Activity Recognition (HAR) is considered to be an efficient model in pervasive computation from sensor readings.
This paper tempts to implement the HAR system using deep learning with the data collected from smart sensors that are publicly available in the UC Irvine Machine Learning Repository (UCI)
arXiv Detail & Related papers (2020-10-07T10:58:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.