Distributed Swarm Learning for Edge Internet of Things
- URL: http://arxiv.org/abs/2403.20188v1
- Date: Fri, 29 Mar 2024 14:05:40 GMT
- Title: Distributed Swarm Learning for Edge Internet of Things
- Authors: Yue Wang, Zhi Tian, FXin Fan, Zhipeng Cai, Cameron Nowzari, Kai Zeng,
- Abstract summary: The rapid growth of the Internet of Things (IoT) has led to the widespread deployment of smart computation devices at wireless edge for machine learning tasks.
This article explores the risks of swarm security, non-constrained wireless communication and privacy issues.
It combines biological intelligence in a holistic manner to provide efficient solutions for large-scale IoT at the edge wireless networks.
- Score: 28.125744688546842
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The rapid growth of Internet of Things (IoT) has led to the widespread deployment of smart IoT devices at wireless edge for collaborative machine learning tasks, ushering in a new era of edge learning. With a huge number of hardware-constrained IoT devices operating in resource-limited wireless networks, edge learning encounters substantial challenges, including communication and computation bottlenecks, device and data heterogeneity, security risks, privacy leakages, non-convex optimization, and complex wireless environments. To address these issues, this article explores a novel framework known as distributed swarm learning (DSL), which combines artificial intelligence and biological swarm intelligence in a holistic manner. By harnessing advanced signal processing and communications, DSL provides efficient solutions and robust tools for large-scale IoT at the edge of wireless networks.
Related papers
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Task-Oriented Integrated Sensing, Computation and Communication for
Wireless Edge AI [46.61358701676358]
Edge artificial intelligence (AI) has been proposed to provide high-performance computation of a conventional cloud down to the network edge.
Recently, convergence of wireless sensing, computation and communication (SC$2$) for specific edge AI tasks, has aroused paradigm shift.
It is paramount importance to advance fully integrated sensing, computation and communication (I SCC) to achieve ultra-reliable and low-latency edge intelligence acquisition.
arXiv Detail & Related papers (2023-06-11T06:40:51Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Federated Learning in Mobile Edge Computing: An Edge-Learning
Perspective for Beyond 5G [24.275726025778482]
A novel edge computing-assisted federated learning framework is proposed in this paper.
The communication constraints between IoT devices and edge servers are taken into account.
Various IoT devices have different training datasets which have varying influence on the accuracy of the global model derived at the edge server.
arXiv Detail & Related papers (2020-07-15T22:58:47Z) - Communication-Efficient Edge AI Inference Over Wireless Networks [33.1306043471745]
We present the principles of efficient deployment of model inference at network edge to provide low-latency and energy-efficient AI services.
This includes the wireless distributed computing framework for low-latency device distributed model inference as well as the wireless cooperative transmission strategy for energy-efficient edge cooperative model inference.
arXiv Detail & Related papers (2020-04-28T08:04:06Z) - Federated Machine Learning for Intelligent IoT via Reconfigurable
Intelligent Surface [35.64178319119883]
We develop an over-the-air based communication-efficient federated machine learning framework for intelligent IoT networks.
We exploit the waveform superposition property of a multi-access channel to reduce the model aggregation error.
arXiv Detail & Related papers (2020-04-13T09:48:04Z) - Communication-Efficient Edge AI: Algorithms and Systems [39.28788394839187]
Wide scale deployment of edge devices (e.g., IoT devices) generates an unprecedented scale of data.
Such enormous data cannot all be sent from end devices to the cloud for processing.
By pushing inference and training processes of AI models to edge nodes, edge AI has emerged as a promising alternative.
arXiv Detail & Related papers (2020-02-22T09:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.