MoDE: Effective Multi-task Parameter Efficient Fine-Tuning with a Mixture of Dyadic Experts
- URL: http://arxiv.org/abs/2408.01505v1
- Date: Fri, 2 Aug 2024 18:05:10 GMT
- Title: MoDE: Effective Multi-task Parameter Efficient Fine-Tuning with a Mixture of Dyadic Experts
- Authors: Lin Ning, Harsh Lara, Meiqi Guo, Abhinav Rastogi,
- Abstract summary: Mixture of Dyadic Experts (MoDE) is a novel design for efficient multi-task adaptation.
Our design allows for more fine-grained mixing, thereby increasing the model's ability to jointly handle multiple tasks.
- Score: 6.245113492272563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parameter-efficient fine-tuning techniques like Low-Rank Adaptation (LoRA) have revolutionized the adaptation of large language models (LLMs) to diverse tasks. Recent efforts have explored mixtures of LoRA modules for multi-task settings. However, our analysis reveals redundancy in the down-projection matrices of these architectures. This observation motivates our proposed method, Mixture of Dyadic Experts (MoDE), which introduces a novel design for efficient multi-task adaptation. This is done by sharing the down-projection matrix across tasks and employing atomic rank-one adapters, coupled with routers that allow more sophisticated task-level specialization. Our design allows for more fine-grained mixing, thereby increasing the model's ability to jointly handle multiple tasks. We evaluate MoDE on the Supernatural Instructions (SNI) benchmark consisting of a diverse set of 700+ tasks and demonstrate that it outperforms state-of-the-art multi-task parameter-efficient fine-tuning (PEFT) methods, without introducing additional parameters. Our findings contribute to a deeper understanding of parameter efficiency in multi-task LLM adaptation and provide a practical solution for deploying high-performing, lightweight models.
Related papers
- Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - Multimodal Instruction Tuning with Conditional Mixture of LoRA [54.65520214291653]
This paper introduces a novel approach that integrates multimodal instruction tuning with Low-Rank Adaption (LoRA)
It innovates upon LoRA by dynamically constructing low-rank adaptation matrices tailored to the unique demands of each input instance.
Experimental results on various multimodal evaluation datasets indicate that MixLoRA not only outperforms the conventional LoRA with the same or even higher ranks.
arXiv Detail & Related papers (2024-02-24T20:15:31Z) - When MOE Meets LLMs: Parameter Efficient Fine-tuning for Multi-task Medical Applications [57.342772288710044]
We propose a novel parameter efficient fine-tuning framework for multi-task medical applications, dubbed as MOELoRA.
For unifying MOE and LoRA, we devise multiple experts as the trainable parameters, where each expert consists of a pair of low-rank matrices to retain the small size of trainable parameters.
We conduct experiments on a multi-task medical dataset, indicating MOELoRA outperforms the existing parameter efficient fine-tuning methods.
arXiv Detail & Related papers (2023-10-21T17:18:09Z) - Attentional Mixtures of Soft Prompt Tuning for Parameter-efficient
Multi-task Knowledge Sharing [53.399742232323895]
ATTEMPT is a new modular, multi-task, and parameter-efficient language model (LM) tuning approach.
It combines knowledge transferred across different tasks via a mixture of soft prompts while keeping original LM unchanged.
It is parameter-efficient (e.g., updates 1,600 times fewer parameters than fine-tuning) and enables multi-task learning and flexible extensions.
arXiv Detail & Related papers (2022-05-24T10:48:33Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Rethinking Hard-Parameter Sharing in Multi-Task Learning [20.792654758645302]
Hard parameter sharing in multi-task learning (MTL) allows tasks to share some of model parameters, reducing storage cost and improving prediction accuracy.
The common sharing practice is to share bottom layers of a deep neural network among tasks while using separate top layers for each task.
Using separate bottom-layer parameters could achieve significantly better performance than the common practice.
arXiv Detail & Related papers (2021-07-23T17:26:40Z) - Small Towers Make Big Differences [59.243296878666285]
Multi-task learning aims at solving multiple machine learning tasks at the same time.
A good solution to a multi-task learning problem should be generalizable in addition to being Pareto optimal.
We propose a method of under- parameterized self-auxiliaries for multi-task models to achieve the best of both worlds.
arXiv Detail & Related papers (2020-08-13T10:45:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.