MIRA: A Method of Federated MultI-Task Learning for LaRge LAnguage Models
- URL: http://arxiv.org/abs/2410.15524v1
- Date: Sun, 20 Oct 2024 22:24:40 GMT
- Title: MIRA: A Method of Federated MultI-Task Learning for LaRge LAnguage Models
- Authors: Ahmed Elbakary, Chaouki Ben Issaid, Tamer ElBatt, Karim Seddik, Mehdi Bennis,
- Abstract summary: We introduce a method for fine-tuning Large Language Models (LLMs)
Our approach leverages the structure of each client's model and enables a learning scheme that considers other clients' tasks and data distribution.
Experimental results, with different datasets and models, demonstrate the proposed method's effectiveness.
- Score: 29.655807841018497
- License:
- Abstract: In this paper, we introduce a method for fine-tuning Large Language Models (LLMs), inspired by Multi-Task learning in a federated manner. Our approach leverages the structure of each client's model and enables a learning scheme that considers other clients' tasks and data distribution. To mitigate the extensive computational and communication overhead often associated with LLMs, we utilize a parameter-efficient fine-tuning method, specifically Low-Rank Adaptation (LoRA), reducing the number of trainable parameters. Experimental results, with different datasets and models, demonstrate the proposed method's effectiveness compared to existing frameworks for federated fine-tuning of LLMs in terms of average and local performances. The proposed scheme outperforms existing baselines by achieving lower local loss for each client while maintaining comparable global performance.
Related papers
- LLM-Powered Preference Elicitation in Combinatorial Assignment [17.367432304040662]
We study the potential of large language models (LLMs) as proxies for humans to simplify preference elicitation (PE) in assignment.
We propose a framework for LLM proxies that can work in tandem with SOTA ML-powered preference elicitation schemes.
We experimentally evaluate the efficiency of LLM proxies against human queries in the well-studied course allocation domain.
arXiv Detail & Related papers (2025-02-14T17:12:20Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.
Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
We propose textbfModel textbfExclusive textbfTask textbfArithmetic for merging textbfGPT-scale models.
Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.
arXiv Detail & Related papers (2024-06-17T10:12:45Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-Task Learning [1.4396109429521227]
Adapting models pre-trained on large-scale datasets to a variety of downstream tasks is a common strategy in deep learning.
parameter-efficient fine-tuning methods have emerged as a promising way to adapt pre-trained models to different tasks while training only a minimal number of parameters.
We introduce MTLoRA, a novel framework for parameter-efficient training of Multi-Task Learning models.
arXiv Detail & Related papers (2024-03-29T17:43:58Z) - A Framework to Implement 1+N Multi-task Fine-tuning Pattern in LLMs
Using the CGC-LORA Algorithm [7.521690071464451]
We propose a unified framework that implements a 1 + N mutli-task fine-tuning pattern in large language models (LLMs)
Our work aims to take an advantage of both MTL (i.e., CGC) and PEFT (i.e., LoRA) scheme.
arXiv Detail & Related papers (2024-01-22T07:58:31Z) - BYOM: Building Your Own Multi-Task Model For Free [69.63765907216442]
BYOM-FFT is for merging fully finetuned models, while BYOM-LoRA is for LoRA-finetuned models.
Experiments on computer vision and natural language processing tasks show that the proposed BYOM methods outperform existing merging methods by a large margin.
arXiv Detail & Related papers (2023-10-03T08:39:33Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
Federated learning allows multiple clients to collaboratively learn a globally shared model.
We propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side.
We achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method.
arXiv Detail & Related papers (2021-02-03T08:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.