論文の概要: Towards a Framework for Evaluating Explanations in Automated Fact Verification
- arxiv url: http://arxiv.org/abs/2403.20322v1
- Date: Fri, 29 Mar 2024 17:50:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 14:55:26.079323
- Title: Towards a Framework for Evaluating Explanations in Automated Fact Verification
- Title(参考訳): 自動ファクト検証における説明評価フレームワークの実現に向けて
- Authors: Neema Kotonya, Francesca Toni,
- Abstract要約: NLPの深いニューラルモデルがより複雑になるにつれて、それらを解釈する必要性はさらに高くなる。
急激な関心は、予測の簡潔で一貫性のある正当化を提供するための合理的な説明に現れている。
我々は,それらの評価を体系的に支援するための説明の合理化について,重要な概念と特性に関する公式な枠組みを提唱する。
- 参考スコア(独自算出の注目度): 12.904145308839997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As deep neural models in NLP become more complex, and as a consequence opaque, the necessity to interpret them becomes greater. A burgeoning interest has emerged in rationalizing explanations to provide short and coherent justifications for predictions. In this position paper, we advocate for a formal framework for key concepts and properties about rationalizing explanations to support their evaluation systematically. We also outline one such formal framework, tailored to rationalizing explanations of increasingly complex structures, from free-form explanations to deductive explanations, to argumentative explanations (with the richest structure). Focusing on the automated fact verification task, we provide illustrations of the use and usefulness of our formalization for evaluating explanations, tailored to their varying structures.
- Abstract(参考訳): NLPの深いニューラルモデルがより複雑になり、結果として不透明になるにつれて、それらを解釈する必要がある。
急激な関心は、予測の簡潔で一貫性のある正当化を提供するための合理的な説明に現れている。
本稿では,それらの評価を体系的に支援するための説明の合理化に関する重要な概念と特性に関する公式な枠組みを提唱する。
また、自由形式の説明から導出的説明、(最も豊かな構造を持つ)議論的説明まで、ますます複雑な構造の説明を合理化するのに適した形式的な枠組みを概説する。
自動事実検証タスクに焦点をあてて,多様構造に合わせた説明文の評価に形式化の利用と有用性を示す。
関連論文リスト
- Reasoning with Natural Language Explanations [15.281385727331473]
説明は人間の合理性の根幹をなす特徴であり、学習と一般化を支えている。
自然言語推論(NLI)の研究は、学習や推論において説明が果たす役割を再考し始めている。
論文 参考訳(メタデータ) (2024-10-05T13:15:24Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Elaborative Simplification as Implicit Questions Under Discussion [51.17933943734872]
本稿では,QUD フレームワークのレンズによる共同作業の簡略化について考察する。
本研究は,QUDを明示的にモデル化することで,作業の単純化と,作業内容と作業内容の関連性について,重要な理解が得られていることを示す。
論文 参考訳(メタデータ) (2023-05-17T17:26:16Z) - A Theoretical Framework for AI Models Explainability with Application in
Biomedicine [3.5742391373143474]
本稿では,文献に見いだせる内容の合成である説明の新たな定義を提案する。
我々は、忠実性(すなわち、モデルの内部動作と意思決定プロセスの真の説明である説明)と可否性(つまり、その説明がどの程度ユーザにとって説得力のあるように見えるか)の性質に、説明を適合させる。
論文 参考訳(メタデータ) (2022-12-29T20:05:26Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
複雑な実生活シナリオにおけるモデルの論理的推論能力を調べるためのベンチマークを提案する。
推論のマルチホップ連鎖に基づいて、説明形式は3つの主成分を含む。
この新たな説明形式を用いて,現在のベストモデルの性能を評価した。
論文 参考訳(メタデータ) (2022-10-22T16:01:13Z) - Explaining Causal Models with Argumentation: the Case of Bi-variate
Reinforcement [15.947501347927687]
因果モデルから議論フレームワーク(AF)を生成するための概念化を導入する。
この概念化は、AFの意味論の望ましい性質を説明型として再解釈することに基づいている。
我々はこれらの論証的説明の理論的評価を行い、それらが望ましい説明的および論証的特性の範囲を満たすかどうかを検討する。
論文 参考訳(メタデータ) (2022-05-23T19:39:51Z) - ExSum: From Local Explanations to Model Understanding [6.23934576145261]
ブラックボックスモデルの動作メカニズムを理解するために,解釈可能性法を開発した。
この目標をフルフィルするには、これらのメソッドによって生成された説明が正しいことと、人々が容易に確実に理解できることの両方が必要である。
本稿では,モデル理解の定量化のための数学的枠組みである説明要約(ExSum)を紹介する。
論文 参考訳(メタデータ) (2022-04-30T02:07:20Z) - Towards Interpretable Natural Language Understanding with Explanations
as Latent Variables [146.83882632854485]
そこで本研究では,人間に注釈付き説明文の小さなセットだけを必要とする自然言語理解の枠組みを構築した。
我々のフレームワークは、ニューラルネットワークの基本的な推論過程をモデル化する潜在変数として、自然言語の説明を扱う。
論文 参考訳(メタデータ) (2020-10-24T02:05:56Z) - The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal
Sufficient Subsets [61.66584140190247]
機能に基づく説明は、自明なモデルでも問題を引き起こすことを示す。
そこで本研究では,2つの一般的な説明書クラスであるシェープリー説明書と十分最小限の部分集合説明書が,基本的に異なる基底的説明書のタイプをターゲットにしていることを示す。
論文 参考訳(メタデータ) (2020-09-23T09:45:23Z) - Unification-based Reconstruction of Multi-hop Explanations for Science
Questions [4.726777092009554]
科学的な説明のコーパスに現れる説明的パターンを活用する手法を提案する。
この枠組みは、語彙的関連性と統一力の概念を統合することで、一連の原子的事実をランク付けする。
k-NNクラスタリングとIR(Information Retrieval)技術を統合することで、Worldtree corpus上で広範囲な評価を行う。
論文 参考訳(メタデータ) (2020-03-31T19:07:51Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。