Deep Geometry Handling and Fragment-wise Molecular 3D Graph Generation
- URL: http://arxiv.org/abs/2404.00014v1
- Date: Fri, 15 Mar 2024 14:45:41 GMT
- Title: Deep Geometry Handling and Fragment-wise Molecular 3D Graph Generation
- Authors: Odin Zhang, Yufei Huang, Shichen Cheng, Mengyao Yu, Xujun Zhang, Haitao Lin, Yundian Zeng, Mingyang Wang, Zhenxing Wu, Huifeng Zhao, Zaixi Zhang, Chenqing Hua, Yu Kang, Sunliang Cui, Peichen Pan, Chang-Yu Hsieh, Tingjun Hou,
- Abstract summary: Most earlier 3D structure-based molecular generation approaches follow an atom-wise paradigm.
fragment-wise generation paradigm offers promising solution.
Deep Geometry Handling protocol extends design focus beyond model architecture.
FragGen is a geometry-reliable, fragment-wise molecular generation method.
- Score: 19.569030412134108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most earlier 3D structure-based molecular generation approaches follow an atom-wise paradigm, incrementally adding atoms to a partially built molecular fragment within protein pockets. These methods, while effective in designing tightly bound ligands, often overlook other essential properties such as synthesizability. The fragment-wise generation paradigm offers a promising solution. However, a common challenge across both atom-wise and fragment-wise methods lies in their limited ability to co-design plausible chemical and geometrical structures, resulting in distorted conformations. In response to this challenge, we introduce the Deep Geometry Handling protocol, a more abstract design that extends the design focus beyond the model architecture. Through a comprehensive review of existing geometry-related models and their protocols, we propose a novel hybrid strategy, culminating in the development of FragGen - a geometry-reliable, fragment-wise molecular generation method. FragGen marks a significant leap forward in the quality of generated geometry and the synthesis accessibility of molecules. The efficacy of FragGen is further validated by its successful application in designing type II kinase inhibitors at the nanomolar level.
Related papers
- GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds and then fine-tuned.
We evaluate it on two solvent design tasks for liquid-liquid extraction, showing that it outperforms four state-of-the-art molecular design techniques.
arXiv Detail & Related papers (2024-11-03T19:45:15Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
We propose a unified model UniIF for inverse folding of all molecules.
Our proposed method surpasses state-of-the-art methods on all tasks.
arXiv Detail & Related papers (2024-05-29T10:26:16Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
We propose a diffusion-based fragment-wise autoregressive generation model for structure-based drug design (SBDD)
We design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first.
We then encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling.
arXiv Detail & Related papers (2024-04-02T14:44:02Z) - Sculpting Molecules in 3D: A Flexible Substructure Aware Framework for
Text-Oriented Molecular Optimization [11.336868279763804]
We present an innovative approach to tackle the inverse design problem by formulating it as a multi-modality guidance generation/optimization task.
Our proposed solution involves a textural-structure alignment symmetric diffusion framework for the implementation of molecular generation/optimization tasks, namely 3DToMolo.
Trials across three guidance generation settings have shown a superior hit generation performance compared to state-of-the-art methodologies.
arXiv Detail & Related papers (2024-03-06T03:15:25Z) - Geometric Latent Diffusion Models for 3D Molecule Generation [172.15028281732737]
Generative models, especially diffusion models (DMs), have achieved promising results for generating feature-rich geometries.
We propose a novel and principled method for 3D molecule generation named Geometric Latent Diffusion Models (GeoLDM)
arXiv Detail & Related papers (2023-05-02T01:07:22Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
We present MolCode, a machine learning-based generative framework for underlineMolecular graph-structure underlineCo-design.
In MolCode, 3D geometric information empowers the molecular 2D graph generation, which in turn helps guide the prediction of molecular 3D structure.
Our investigation reveals that the 2D topology and 3D geometry contain intrinsically complementary information in molecule design.
arXiv Detail & Related papers (2023-04-12T13:34:22Z) - Equivariant Shape-Conditioned Generation of 3D Molecules for
Ligand-Based Drug Design [3.032184156362992]
We introduce a new 3D generative model that enables shape-conditioned 3D molecular design by encoding molecular shape and variationally encoding chemical identity.
We evaluate our 3D generative model in tasks relevant to drug design including shape-conditioned generation of chemically diverse molecular structures and shape-constrained molecular property optimization.
arXiv Detail & Related papers (2022-10-06T19:37:34Z) - ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for
Property Prediction [25.49976851499949]
We propose a novel Geometry Enhanced Molecular representation learning method (GEM) for Chemical Representation Learning (ChemRL)
At first, we design a geometry-based GNN architecture that simultaneously models atoms, bonds, and bond angles in a molecule.
On top of the devised GNN architecture, we propose several novel geometry-level self-supervised learning strategies to learn spatial knowledge.
arXiv Detail & Related papers (2021-06-11T02:35:53Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - An End-to-End Framework for Molecular Conformation Generation via
Bilevel Programming [71.82571553927619]
We propose an end-to-end solution for molecular conformation prediction called ConfVAE.
Specifically, the molecular graph is first encoded in a latent space, and then the 3D structures are generated by solving a principled bilevel optimization program.
arXiv Detail & Related papers (2021-05-15T15:22:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.