論文の概要: SOMson -- Sonification of Multidimensional Data in Kohonen Maps
- arxiv url: http://arxiv.org/abs/2404.00016v2
- Date: Wed, 22 May 2024 11:58:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 05:50:08.861768
- Title: SOMson -- Sonification of Multidimensional Data in Kohonen Maps
- Title(参考訳): SOMson-高峰円図における多次元データの音化
- Authors: Simon Linke, Tim Ziemer,
- Abstract要約: 自己組織化マップ (SOMs) は、低次元マップ上の高次元特徴空間を可視化するニューラルネットワークである。
基礎となるデータの対話的ソナライゼーションであるSOMsonをデータ拡張手法として提案する。
ユーザスタディの代わりに、インタラクティブなオンライン例を示し、読者がSOMson自身を探索できるようにします。
- 参考スコア(独自算出の注目度): 0.23020018305241333
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Kohonen Maps, aka. Self-organizing maps (SOMs) are neural networks that visualize a high-dimensional feature space on a low-dimensional map. While SOMs are an excellent tool for data examination and exploration, they inherently cause a loss of detail. Visualizations of the underlying data do not integrate well and, therefore, fail to provide an overall picture. Consequently, we suggest SOMson, an interactive sonification of the underlying data, as a data augmentation technique. The sonification increases the amount of information provided simultaneously by the SOM. Instead of a user study, we present an interactive online example, so readers can explore SOMson themselves. Its strengths, weaknesses, and prospects are discussed.
- Abstract(参考訳): 古本園地図、別名。
自己組織化マップ (SOMs) は、低次元マップ上の高次元特徴空間を可視化するニューラルネットワークである。
SOMはデータ検査や探索に優れたツールですが、本質的には細部が失われます。
基盤となるデータの可視化はうまく統合されていないため、全体像の提供に失敗する。
その結果、データ拡張手法として、基礎となるデータの対話的ソナリゼーションであるSOMsonを提案する。
音素化はSOMによって同時に提供される情報量を増加させる。
ユーザスタディの代わりに、インタラクティブなオンライン例を示し、読者がSOMson自身を探索できるようにします。
その強さ、弱点、展望について論じる。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - Using Slisemap to interpret physical data [0.0]
Slisemapは、多様体の可視化と説明可能な人工知能を組み合わせる。
Slisemapは、ブラックボックスモデルの異なる振る舞いの概要を提供します。
Slisemapが物理的データでどのように利用され、評価されるかを示す。
論文 参考訳(メタデータ) (2023-10-24T08:25:49Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Scalable semi-supervised dimensionality reduction with GPU-accelerated
EmbedSOM [0.0]
BlosSOMは高次元データセットの対話型ユーザステアブル可視化のための高性能半教師付き次元減少ソフトウェアである。
現実的なデータセットにBlosSOMを適用することで、ユーザが指定したレイアウトを組み込んだ高品質な視覚化と、特定の機能に集中することが可能になる。
論文 参考訳(メタデータ) (2022-01-03T15:06:22Z) - Dendritic Self-Organizing Maps for Continual Learning [0.0]
我々は、DendSOM(Dendritic-Self-Organizing Map)と呼ばれる生物学的ニューロンにインスパイアされた新しいアルゴリズムを提案する。
DendSOMは、入力空間の特定の領域からパターンを抽出する単一のSOMからなる。
ベンチマークデータセットでは、古典的なSOMやいくつかの最先端の継続的学習アルゴリズムよりも優れています。
論文 参考訳(メタデータ) (2021-10-18T14:47:19Z) - Information Symmetry Matters: A Modal-Alternating Propagation Network
for Few-Shot Learning [118.45388912229494]
未ラベルサンプルの欠落した意味情報を補うために,モーダル代替伝搬ネットワーク (MAP-Net) を提案する。
我々は,情報伝達がより有益になるように,セマンティクスを介して視覚的関係ベクトルを誘導するリレーガイダンス(RG)戦略を設計する。
提案手法は有望な性能を達成し,最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2021-09-03T03:43:53Z) - NeuralFusion: Online Depth Fusion in Latent Space [77.59420353185355]
潜在特徴空間における深度マップアグリゲーションを学習する新しいオンライン深度マップ融合手法を提案する。
提案手法は,高騒音レベルを処理し,特に測光ステレオベース深度マップに共通する粗悪なアウトレージに対処できる。
論文 参考訳(メタデータ) (2020-11-30T13:50:59Z) - Improving Self-Organizing Maps with Unsupervised Feature Extraction [0.0]
自己組織化マップ(SOM)は脳にインスパイアされた神経モデルであり、教師なし学習に非常に有望である。
本稿では,生データの代わりに抽出した特徴を用いてSOM性能を向上させることを提案する。
我々は,SOM分類を+6.09%改善し,教師なし画像分類における最先端性能を得る。
論文 参考訳(メタデータ) (2020-09-04T13:19:24Z) - Semi-Automatic Data Annotation guided by Feature Space Projection [117.9296191012968]
本稿では,適切な特徴空間投影と半教師付きラベル推定に基づく半自動データアノテーション手法を提案する。
MNISTデータセットとヒト腸内寄生虫の胎児不純物の有無による画像を用いて本手法の有効性を検証した。
この結果から,人間と機械の相補的能力を組み合わせた視覚分析ツールの付加価値が,より効果的な機械学習に有効であることが示唆された。
論文 参考訳(メタデータ) (2020-07-27T17:03:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。