Advancing Explainable Autonomous Vehicle Systems: A Comprehensive Review and Research Roadmap
- URL: http://arxiv.org/abs/2404.00019v1
- Date: Tue, 19 Mar 2024 11:43:41 GMT
- Title: Advancing Explainable Autonomous Vehicle Systems: A Comprehensive Review and Research Roadmap
- Authors: Sule Tekkesinoglu, Azra Habibovic, Lars Kunze,
- Abstract summary: This study presents a review to discuss the complexities associated with explanation generation and presentation.
Our roadmap is underpinned by principles of responsible research and innovation.
By exploring these research directions, the study aims to guide the development and deployment of explainable AVs.
- Score: 4.2330023661329355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given the uncertainty surrounding how existing explainability methods for autonomous vehicles (AVs) meet the diverse needs of stakeholders, a thorough investigation is imperative to determine the contexts requiring explanations and suitable interaction strategies. A comprehensive review becomes crucial to assess the alignment of current approaches with the varied interests and expectations within the AV ecosystem. This study presents a review to discuss the complexities associated with explanation generation and presentation to facilitate the development of more effective and inclusive explainable AV systems. Our investigation led to categorising existing literature into three primary topics: explanatory tasks, explanatory information, and explanatory information communication. Drawing upon our insights, we have proposed a comprehensive roadmap for future research centred on (i) knowing the interlocutor, (ii) generating timely explanations, (ii) communicating human-friendly explanations, and (iv) continuous learning. Our roadmap is underpinned by principles of responsible research and innovation, emphasising the significance of diverse explanation requirements. To effectively tackle the challenges associated with implementing explainable AV systems, we have delineated various research directions, including the development of privacy-preserving data integration, ethical frameworks, real-time analytics, human-centric interaction design, and enhanced cross-disciplinary collaborations. By exploring these research directions, the study aims to guide the development and deployment of explainable AVs, informed by a holistic understanding of user needs, technological advancements, regulatory compliance, and ethical considerations, thereby ensuring safer and more trustworthy autonomous driving experiences.
Related papers
- Explainable Interface for Human-Autonomy Teaming: A Survey [12.26178592621411]
This paper conducts a thoughtful study on the underexplored domain of Explainable Interface (EI) in HAT systems.
We explore the design, development, and evaluation of EI within XAI-enhanced HAT systems.
We contribute to a novel framework for EI, addressing the unique challenges in HAT.
arXiv Detail & Related papers (2024-05-04T06:35:38Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
Black-box machine learning approaches have become a dominant modeling paradigm for knowledge extraction in remote sensing.
We perform a systematic review to identify the key trends in the field and shed light on novel explainable AI approaches.
We also give a detailed outlook on the challenges and promising research directions.
arXiv Detail & Related papers (2024-02-21T13:19:58Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - A Systematic Review on Fostering Appropriate Trust in Human-AI
Interaction [19.137907393497848]
Appropriate Trust in Artificial Intelligence (AI) systems has rapidly become an important area of focus for both researchers and practitioners.
Various approaches have been used to achieve it, such as confidence scores, explanations, trustworthiness cues, or uncertainty communication.
This paper presents a systematic review to identify current practices in building appropriate trust, different ways to measure it, types of tasks used, and potential challenges associated with it.
arXiv Detail & Related papers (2023-11-08T12:19:58Z) - Social Interaction-Aware Dynamical Models and Decision Making for
Autonomous Vehicles [20.123965317836106]
Interaction-aware Autonomous Driving (IAAD) is a rapidly growing field of research.
It focuses on the development of autonomous vehicles that are capable of interacting safely and efficiently with human road users.
This is a challenging task, as it requires the autonomous vehicle to be able to understand and predict the behaviour of human road users.
arXiv Detail & Related papers (2023-10-29T03:43:50Z) - A Survey on Interpretable Cross-modal Reasoning [64.37362731950843]
Cross-modal reasoning (CMR) has emerged as a pivotal area with applications spanning from multimedia analysis to healthcare diagnostics.
This survey delves into the realm of interpretable cross-modal reasoning (I-CMR)
This survey presents a comprehensive overview of the typical methods with a three-level taxonomy for I-CMR.
arXiv Detail & Related papers (2023-09-05T05:06:48Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
Human-Object Interaction (HOI) detection is a challenging computer vision task.
We present a framework that enhances HOI detection by incorporating structured text knowledge.
arXiv Detail & Related papers (2023-07-25T14:20:52Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
We devise three novel text-based tasks for situational reasoning in the traffic domain.
We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work.
We provide in-depth analyses of model performance on data partitions and examine model predictions categorically.
arXiv Detail & Related papers (2023-06-05T01:01:12Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - What Do We Want From Explainable Artificial Intelligence (XAI)? -- A
Stakeholder Perspective on XAI and a Conceptual Model Guiding
Interdisciplinary XAI Research [0.8707090176854576]
Main aim of explainability approaches is to satisfy specific interests, goals, expectations, needs, and demands regarding artificial systems.
It often remains unclear how explainability approaches are supposed to achieve the goal of satisfying stakeholders' desiderata.
arXiv Detail & Related papers (2021-02-15T19:54:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.