Memristor-Based Lightweight Encryption
- URL: http://arxiv.org/abs/2404.00125v1
- Date: Fri, 29 Mar 2024 19:30:08 GMT
- Title: Memristor-Based Lightweight Encryption
- Authors: Muhammad Ali Siddiqi, Jan Andrés Galvan Hernández, Anteneh Gebregiorgis, Rajendra Bishnoi, Christos Strydis, Said Hamdioui, Mottaqiallah Taouil,
- Abstract summary: Next-generation personalized healthcare devices are undergoing extreme miniaturization in order to improve user acceptability.
cryptographic primitives using available target technologies are notorious for their energy consumption.
We propose a 40-nm RRAM-based GIFT-cipher implementation using a 1T1R configuration with promising results.
- Score: 0.6774275305946261
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Next-generation personalized healthcare devices are undergoing extreme miniaturization in order to improve user acceptability. However, such developments make it difficult to incorporate cryptographic primitives using available target technologies since these algorithms are notorious for their energy consumption. Besides, strengthening these schemes against side-channel attacks further adds to the device overheads. Therefore, viable alternatives among emerging technologies are being sought. In this work, we investigate the possibility of using memristors for implementing lightweight encryption. We propose a 40-nm RRAM-based GIFT-cipher implementation using a 1T1R configuration with promising results; it exhibits roughly half the energy consumption of a CMOS-only implementation. More importantly, its non-volatile and reconfigurable substitution boxes offer an energy-efficient protection mechanism against side-channel attacks. The complete cipher takes 0.0034 mm$^2$ of area, and encrypting a 128-bit block consumes a mere 242 pJ.
Related papers
- R-STELLAR: A Resilient Synthesizable Signature Attenuation SCA Protection on AES-256 with built-in Attack-on-Countermeasure Detection [0.4593752628215474]
Side channel attacks (SCAs) remain a significant threat to the security of cryptographic systems in modern embedded devices.
Physical countermeasures have significantly increased the minimum traces to disclosure (MTD) to 1 billion.
We introduce a Voltage drop Linear region Biasing (VLB) attack technique that reduces the MTD to over 2000 times less than the previous threshold.
arXiv Detail & Related papers (2024-08-21T22:29:33Z) - MoDeGPT: Modular Decomposition for Large Language Model Compression [59.361006801465344]
This paper introduces textbfModular bfDecomposition (MoDeGPT), a novel structured compression framework.
MoDeGPT partitions the Transformer block into modules comprised of matrix pairs and reduces the hidden dimensions.
Our experiments show MoDeGPT, without backward propagation, matches or surpasses previous structured compression methods.
arXiv Detail & Related papers (2024-08-19T01:30:14Z) - LaserEscape: Detecting and Mitigating Optical Probing Attacks [5.4511018094405905]
We introduce LaserEscape, the first fully digital and FPGA-compatible countermeasure to detect and mitigate optical probing attacks.
LaserEscape incorporates digital delay-based sensors to reliably detect the physical alteration on the fabric caused by laser beam irradiations in real time.
As a response to the attack, LaserEscape deploys real-time hiding approaches using randomized hardware reconfigurability.
arXiv Detail & Related papers (2024-05-06T16:49:11Z) - Chaotic Encryption for 10-Gb Ethernet Optical Links [0.7499722271664144]
Ethernet traffic has been encrypted, transmitted, and decrypted over a multimode optical link.
No overhead is introduced during encryption, getting no losses in the total throughput.
arXiv Detail & Related papers (2024-01-26T18:08:19Z) - DynamiQS: Quantum Secure Authentication for Dynamic Charging of Electric Vehicles [61.394095512765304]
Dynamic Wireless Power Transfer (DWPT) is a novel technology that allows charging an electric vehicle while driving.
Recent advancements in quantum computing jeopardize classical public key cryptography.
We propose DynamiQS, the first post-quantum secure authentication protocol for dynamic wireless charging.
arXiv Detail & Related papers (2023-12-20T09:40:45Z) - Grain-128PLE: Generic Physical-Layer Encryption for IoT Networks [6.515605001492591]
Grain-128PLE is a lightweight physical layer encryption scheme that is derived from the Grain-128AEAD v2 stream cipher.
The design of Grain-128PLE maintains the structure of the main building blocks of the original Grain-128AEAD v2 stream cipher.
arXiv Detail & Related papers (2023-09-27T10:48:52Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - A Comprehensive Survey on the Implementations, Attacks, and
Countermeasures of the Current NIST Lightweight Cryptography Standard [2.055054374525828]
This survey is the first work on the current standard for lightweight cryptography, standardized in 2023.
Lightweight cryptography plays a vital role in securing resource-constrained embedded systems.
NIST initiated a standardization process for lightweight cryptography.
arXiv Detail & Related papers (2023-04-13T02:29:38Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
Attention-based neural networks have become pervasive in many AI tasks.
The use of the attention mechanism and feed-forward network (FFN) demands excessive computational and memory resources.
This paper proposes a hardware-friendly variant that adopts a unified butterfly sparsity pattern to approximate both the attention mechanism and the FFNs.
arXiv Detail & Related papers (2022-09-20T09:28:26Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z) - BinaryCoP: Binary Neural Network-based COVID-19 Face-Mask Wear and
Positioning Predictor on Edge Devices [63.56630165340053]
Face masks offer an effective solution in healthcare for bi-directional protection against air-borne diseases.
CNNs offer an excellent solution for face recognition and classification of correct mask wearing and positioning.
CNNs can be used at entrances to corporate buildings, airports, shopping areas, and other indoor locations, to mitigate the spread of the virus.
arXiv Detail & Related papers (2021-02-06T00:14:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.