論文の概要: Comparing Hyper-optimized Machine Learning Models for Predicting Efficiency Degradation in Organic Solar Cells
- arxiv url: http://arxiv.org/abs/2404.00173v2
- Date: Mon, 10 Jun 2024 12:46:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 00:34:14.929082
- Title: Comparing Hyper-optimized Machine Learning Models for Predicting Efficiency Degradation in Organic Solar Cells
- Title(参考訳): 有機太陽電池の効率劣化予測のための過最適化機械学習モデルの比較
- Authors: David Valiente, Fernando Rodríguez-Mas, Juan V. Alegre-Requena, David Dalmau, Juan C. Ferrer,
- Abstract要約: 本研究は,有機太陽電池 (OSC) の電力変換効率 (PCE) に苦しむ時間的劣化を表現するための機械学習モデルを提案する。
製造プロセスと環境条件の両方に関して最大7変数を含む996項目のデータベースを180日間以上作成しました。
一方、根平均二乗誤差(RMSE)、二乗誤差(SSE)の和、および平均絶対誤差(MAE)>1%の目標値であるPCEは、係数決定(R2)の値に達した。
- 参考スコア(独自算出の注目度): 39.847063110051245
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work presents a set of optimal machine learning (ML) models to represent the temporal degradation suffered by the power conversion efficiency (PCE) of polymeric organic solar cells (OSCs) with a multilayer structure ITO/PEDOT:PSS/P3HT:PCBM/Al. To that aim, we generated a database with 996 entries, which includes up to 7 variables regarding both the manufacturing process and environmental conditions for more than 180 days. Then, we relied on a software framework that brings together a conglomeration of automated ML protocols that execute sequentially against our database by simply command-line interface. This easily permits hyper-optimizing and randomizing seeds of the ML models through exhaustive benchmarking so that optimal models are obtained. The accuracy achieved reaches values of the coefficient determination (R2) widely exceeding 0.90, whereas the root mean squared error (RMSE), sum of squared error (SSE), and mean absolute error (MAE)>1% of the target value, the PCE. Additionally, we contribute with validated models able to screen the behavior of OSCs never seen in the database. In that case, R2~0.96-0.97 and RMSE~1%, thus confirming the reliability of the proposal to predict. For comparative purposes, classical Bayesian regression fitting based on non-linear mean squares (LMS) are also presented, which only perform sufficiently for univariate cases of single OSCs. Hence they fail to outperform the breadth of the capabilities shown by the ML models. Finally, thanks to the standardized results offered by the ML framework, we study the dependencies between the variables of the dataset and their implications for the optimal performance and stability of the OSCs. Reproducibility is ensured by a standardized report altogether with the dataset, which are publicly available at Github.
- Abstract(参考訳): 本研究は,多層構造ITO/PEDOT:PSS/P3HT:PCBM/Alを用いた高分子有機太陽電池 (OSC) の電力変換効率 (PCE) による時間劣化の最適機械学習モデルを提案する。
そこで我々は,製造プロセスと環境条件の両方に関して最大7変数を含む996項目のデータベースを180日間以上作成した。
そこで私たちは、コマンドラインインターフェースだけでデータベースに対してシーケンシャルに実行する自動MLプロトコルの集合体をまとめるソフトウェアフレームワークを頼りにしました。
これにより、徹底的なベンチマークによってMLモデルの超最適化およびランダム化が可能になり、最適なモデルが得られる。
一方、根平均二乗誤差(RMSE)、二乗誤差(SSE)の和、および平均絶対誤差(MAE)>1%の目標値であるPCEは、係数決定(R2)の値に達した。
さらに、データベースにないOSCの動作を確認できる検証されたモデルにコントリビュートする。
この場合 R2~0.96-0.97 と RMSE~1% は、予測する提案の信頼性を確認する。
比較目的では、非線形平均平方(LMS)に基づく古典的ベイズ回帰フィッティング(英語版)も提示され、単一のOSCの単変量に対してのみ十分に機能する。
そのため、MLモデルで示される能力の広さを上回りません。
最後に、MLフレームワークによって提供される標準化された結果により、データセットの変数とOSCの最適性能と安定性の関係について検討する。
再現性は、Githubで公開されているデータセットとともに標準化されたレポートによって保証される。
関連論文リスト
- Hybrid machine learning based scale bridging framework for permeability prediction of fibrous structures [0.0]
本研究では,繊維状繊維構造の透水性を予測するための,ハイブリッド機械学習に基づくスケールブリジングフレームワークを提案する。
SSM(Single Scale Method)、SUM(Simple Upscaling Method)、SBM(Scale-Bridging Method)、FRM(Fully Resolved Model)の4つの手法が評価された。
論文 参考訳(メタデータ) (2025-02-07T16:09:25Z) - LLM-Powered Benchmark Factory: Reliable, Generic, and Efficient [19.673388630963807]
我々は,4次元と10の基準で構成された,自動的かつ偏りのない評価フレームワークを提案する。
本フレームワークでは,大規模言語モデル(LLM)を汎用ベンチマークジェネレータとして直接プロンプトする利点と弱点を解析する。
次に、識別された弱点に対処し、それらをBenchMakerとして統合する一連の方法を紹介します。
実験により、BenchMakerは、すべてのメトリクスにおいて、人による注釈付きベンチマークよりも優れた、あるいは同等のパフォーマンスを達成することが確認された。
論文 参考訳(メタデータ) (2025-02-02T06:36:01Z) - MOFHEI: Model Optimizing Framework for Fast and Efficient Homomorphically Encrypted Neural Network Inference [0.8388591755871735]
ホモモルフィック暗号化(HE)により、暗号化データ上で機械学習タスクを実行できる。
HEに基づくニューラルネットワーク推論を高速かつ効率的にするためのモデルを最適化するフレームワークであるMOFHEIを提案する。
このフレームワークはLeNet上で最大98%のプルーニング比を実現し,PI実行に必要なHE操作の最大93%を排除した。
論文 参考訳(メタデータ) (2024-12-10T22:44:54Z) - Enhancing Microgrid Performance Prediction with Attention-based Deep Learning Models [0.0]
本研究の目的は、グリッド不安定性に寄与する電力振動を特徴とするマイクログリッドシステムの運用上の課題に対処することである。
畳み込みとGRU(Gated Recurrent Unit)の強みを活かした統合戦略が提案されている。
このフレームワークは、包括的な負荷予測を行うMulti-Layer Perceptron(MLP)モデルによって固定されている。
論文 参考訳(メタデータ) (2024-07-20T21:24:11Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
本稿では,データ生成,モデルトレーニング,評価を橋渡しする新しいクローズドループシステムを提案する。
各ループ内で、MLLM-DataEngineはまず評価結果に基づいてモデルの弱点を分析する。
ターゲットとして,異なる種類のデータの比率を調整する適応型バッドケースサンプリングモジュールを提案する。
品質については、GPT-4を用いて、各データタイプで高品質なデータを生成する。
論文 参考訳(メタデータ) (2023-08-25T01:41:04Z) - Robusta: Robust AutoML for Feature Selection via Reinforcement Learning [24.24652530951966]
強化学習(RL)に基づく初の堅牢なAutoMLフレームワークRobostaを提案します。
このフレームワークは,良性サンプルの競争精度を維持しつつ,モデルロバスト性を最大22%向上させることができることを示す。
論文 参考訳(メタデータ) (2021-01-15T03:12:29Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。