論文の概要: Multi-Conditional Ranking with Large Language Models
- arxiv url: http://arxiv.org/abs/2404.00211v3
- Date: Thu, 17 Oct 2024 18:37:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:23:11.332059
- Title: Multi-Conditional Ranking with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた多言語ランク付け
- Authors: Pouya Pezeshkpour, Estevam Hruschka,
- Abstract要約: 大規模言語モデルを用いて項目をランク付けすることは、レコメンデーションと検索システムにおいて一般的なアプローチとなっている。
しかし、現実のシナリオは、比較的小さな項目のセットをランク付けするなど、異なる課題を呈することが多い。
本稿では, 条件を抽出し, ソートし, 項目を反復的にランク付けする, 分割推論手法を提案する。
- 参考スコア(独自算出の注目度): 4.390998479503661
- License:
- Abstract: Utilizing large language models (LLMs) to rank a set of items has become a common approach in recommendation and retrieval systems. Typically, these systems focus on ordering a substantial number of documents in a monotonic order based on a given query. However, real-world scenarios often present a different challenge: ranking a comparatively smaller set of items, but according to a variety of diverse and occasionally conflicting conditions. In this paper, we define and explore the task of multi-conditional ranking by introducing MCRank, a benchmark tailored for assessing multi-conditional ranking across various item types and conditions. Our analysis of LLMs using MCRank indicates a significant decrease in performance as the number and complexity of items and conditions grow. To overcome this limitation, we propose a novel decomposed reasoning method, consisting of EXtracting and Sorting the conditions, and then Iteratively Ranking the items (EXSIR). Our extensive experiments show that this decomposed reasoning method enhances LLMs' performance significantly, achieving up to a 14.4% improvement over existing LLMs. We also provide a detailed analysis of LLMs performance across various condition categories, and examine the effectiveness of decomposition step. Furthermore, we compare our method with existing approaches such as Chain-of-Thought and existing ranking models, demonstrating the superiority of our approach and complexity of MCR task. We released our dataset and code.
- Abstract(参考訳): 大規模言語モデル(LLM)を用いて項目をランク付けする手法は,レコメンデーションや検索システムにおいて一般的なアプローチとなっている。
通常、これらのシステムは、与えられたクエリに基づいて、大量のドキュメントを単調な順序で順序付けすることに焦点を当てる。
しかし、現実のシナリオは、比較的小さな項目のセットをランク付けするなど、異なる課題を呈することが多い。
本稿では,MCRank(MCRank)を導入したマルチ条件ランキングの課題を定義し,その課題について検討する。
MCRankを用いたLCMの解析は,項目数や条件が増加するにつれて性能が著しく低下することを示している。
この制限を克服するために,条件を抽出し,修正し,次に項目を反復的にランク付けする,分割された推論手法を提案する。
この分解的推論法により, LLMの性能が向上し, 既存の LLM よりも14.4% 向上した。
また, LLMの性能を様々な条件カテゴリーで詳細に解析し, 分解工程の有効性について検討する。
さらに,本手法をChain-of-Thoughtや既存のランキングモデルなどの既存手法と比較し,MCRタスクの優位性と複雑性を示す。
データセットとコードをリリースしました。
関連論文リスト
- Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
大規模言語モデル (LLM) はシーケンシャル・ツー・シーケンス・アプローチによってタスクのランク付けに使用されている。
この階調のパラダイムは、より大きな候補集合を反復的に扱うためにスライディングウインドウ戦略を必要とする。
そこで本稿では,LLMを用いた自己校正リストのランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T10:31:31Z) - LAMPO: Large Language Models as Preference Machines for Few-shot Ordinal Classification [34.9210323553677]
LAMPOは,Large Language Models (LLMs) を多クラス順序分類タスクに応用した新しいパラダイムである。
7つの公開データセットに関する大規模な実験は、多様なアプリケーションにわたるLAMPOの極めて競争力のあるパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-08-06T15:55:05Z) - The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism [39.392450788666814]
大規模言語モデル(LLM)の現在の評価は、しばしば非決定論を見落としている。
greedyデコーディングは一般的に、最も評価されたタスクのサンプリング方法よりも優れています。
より小型のLPMはGPT-4-Turboのような大型のモデルと一致するか、超えることができる。
論文 参考訳(メタデータ) (2024-07-15T06:12:17Z) - SEAM: A Stochastic Benchmark for Multi-Document Tasks [30.153949809172605]
現在、マルチドキュメントタスクにおける大規模言語モデル(LLM)の能力を測定するベンチマークは存在しない。
マルチドキュメントタスクの評価手法であるSEAM(SEAM: Evaluation Approach for Multi-document task)を提案する。
マルチドキュメントタスクは,70Bパラメータを持つ最先端モデルであっても,LLMにとって大きな課題となる。
論文 参考訳(メタデータ) (2024-06-23T11:57:53Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large
Language Models [56.256069117502385]
Chain of Thought (CoT)アプローチは、複雑な推論タスクにおいて、LLM(Large Language Models)の能力を高めるために使用できる。
しかし、マルチモーダル推論における最適なCoT実例の選択は、まだ検討されていない。
本稿では,この課題に対処する新しい手法として,検索機構を用いて実演例を自動的に選択する手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T08:07:21Z) - Routing to the Expert: Efficient Reward-guided Ensemble of Large
Language Models [69.51130760097818]
本研究では,報奨誘導型ルーティング手法であるZooterを提案する。
さまざまなドメインやタスクについて26のサブセットを持つ総合的なベンチマークコレクション上でZooterを評価する。
論文 参考訳(メタデータ) (2023-11-15T04:40:43Z) - FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models [79.62191017182518]
FollowBenchは、大規模言語モデルのベンチマークに続くきめ細かい制約のベンチマークである。
本稿では,初期命令に段階的に1つの制約を付加するマルチレベル機構を提案する。
FollowBench上での13のLLMの評価により,LLMの弱さと今後の研究への道のりを示す。
論文 参考訳(メタデータ) (2023-10-31T12:32:38Z) - BLESS: Benchmarking Large Language Models on Sentence Simplification [55.461555829492866]
我々は、テキスト単純化(TS)タスク上で、最新の最先端の大規模言語モデル(LLM)のパフォーマンスベンチマークであるBLESSを紹介する。
異なるドメイン(Wikipedia、ニュース、医療)の3つのテストセットに対して、サイズ、アーキテクチャ、事前学習方法、アクセシビリティの異なる44のモデルを評価する。
評価の結果,最高のLSMはTSのトレーニングを受けていないにもかかわらず,最先端のTSベースラインと相容れない性能を示した。
論文 参考訳(メタデータ) (2023-10-24T12:18:17Z) - MM-BigBench: Evaluating Multimodal Models on Multimodal Content
Comprehension Tasks [56.60050181186531]
MM-BigBenchを導入し、様々なモデルや命令のパフォーマンスを広範囲に評価する。
本稿では,6タスクにまたがる14のマルチモーダルデータセット上で,20の言語モデル (14 MLLM) を評価し,各タスクに10の指示を与え,新しい洞察を導き出す。
論文 参考訳(メタデータ) (2023-10-13T11:57:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。