論文の概要: MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs
- arxiv url: http://arxiv.org/abs/2411.02571v2
- Date: Sat, 22 Feb 2025 05:33:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:51:23.203365
- Title: MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs
- Title(参考訳): MM埋め込み:マルチモーダルLLMを用いたユニバーサルマルチモーダル検索
- Authors: Sheng-Chieh Lin, Chankyu Lee, Mohammad Shoeybi, Jimmy Lin, Bryan Catanzaro, Wei Ping,
- Abstract要約: 本稿では,マルチモーダル大言語モデル(MLLM)を用いた情報検索手法を提案する。
まず,16個の検索タスクを持つ10個のデータセットに対して,MLLMをバイエンコーダレトリバーとして微調整する。
我々のモデルMM-Embedはマルチモーダル検索ベンチマークM-BEIR上で最先端の性能を実現する。
- 参考スコア(独自算出の注目度): 78.5013630951288
- License:
- Abstract: State-of-the-art retrieval models typically address a straightforward search scenario, in which retrieval tasks are fixed (e.g., finding a passage to answer a specific question) and only a single modality is supported for both queries and retrieved results. This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs), enabling a broader search scenario, termed universal multimodal retrieval, where multiple modalities and diverse retrieval tasks are accommodated. To this end, we first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks. Our empirical results show that the fine-tuned MLLM retriever is capable of understanding challenging queries, composed of both text and image, but it underperforms compared to a smaller CLIP retriever in cross-modal retrieval tasks due to the modality bias exhibited by MLLMs. To address the issue, we propose modality-aware hard negative mining to mitigate the modality bias exhibited by MLLM retrievers. Second, we propose continuously fine-tuning the universal multimodal retriever to enhance its text retrieval capability while preserving multimodal retrieval capability. As a result, our model, MM-Embed, achieves state-of-the-art performance on the multimodal retrieval benchmark M-BEIR, which spans multiple domains and tasks, while also surpassing the state-of-the-art text retrieval model, NV-Embed-v1, on the MTEB retrieval benchmark. We also explore prompting the off-the-shelf MLLMs as zero-shot rerankers to refine the ranking of the candidates from the multimodal retriever. We find that, through prompt-and-reranking, MLLMs can further improve multimodal retrieval when the user queries (e.g., text-image composed queries) are more complex and challenging to understand. These findings also pave the way for advancing universal multimodal retrieval in the future.
- Abstract(参考訳): 最先端の検索モデルは、検索タスクが固定された(例えば、特定の質問に答えるための経路を見つける)単純な検索シナリオに対処し、クエリと検索結果の両方に対して単一のモダリティのみがサポートされている。
本稿では,マルチモーダル大言語モデル (MLLM) を用いた情報検索手法を提案する。
この目的のために,16個の検索タスクを持つ10個のデータセットに対して,MLLMをバイエンコーダレトリバーとして微調整する。
実験の結果, MLLM 検索はテキストと画像の両方からなる難解な問合せを解くことができるが, MLLM のモダリティバイアスにより, より小型の CLIP 検索よりも性能が劣ることがわかった。
この問題に対処するために,MLLMレトリバーが提示するモダリティバイアスを軽減するために,モダリティを考慮したハードネガティブマイニングを提案する。
第2に,マルチモーダル検索能力を保ちながら,テキスト検索能力を向上させるために,汎用マルチモーダル検索器を連続的に微調整することを提案する。
その結果、MM-Embedはマルチモーダル検索ベンチマークM-BEIRにおいて、複数のドメインやタスクにまたがる最先端のテキスト検索モデルであるNV-Embed-v1をMTEB検索ベンチマークで上回りながら、最先端のパフォーマンスを達成する。
また,市販のMLLMをゼロショットリランカとして推進し,マルチモーダルレトリバーから候補のランク付けを洗練させる方法について検討する。
ユーザクエリ(例えば、テキストイメージ合成クエリ)がより複雑で理解が難しい場合、MLLMはプロンプトとリグレードによって、マルチモーダル検索をさらに改善できることがわかった。
これらの知見は、将来、普遍的なマルチモーダル検索を推し進める道を開いた。
関連論文リスト
- Towards Text-Image Interleaved Retrieval [49.96332254241075]
テキスト画像検索(TIIR)タスクを導入し、クエリと文書をインターリーブしたテキスト画像シーケンスとする。
我々は、自然にインターリーブされたwikiHowチュートリアルに基づいてTIIRベンチマークを構築し、インターリーブされたクエリを生成するために特定のパイプラインを設計する。
異なる粒度で視覚トークンの数を圧縮する新しいMMEを提案する。
論文 参考訳(メタデータ) (2025-02-18T12:00:47Z) - LamRA: Large Multimodal Model as Your Advanced Retrieval Assistant [63.28378110792787]
LamRAは大規模マルチモーダルモデルに高度な検索と再ランク機能を持たせるために設計された多機能フレームワークである。
検索には、言語のみの事前学習とマルチモーダル・インストラクション・チューニングからなる2段階のトレーニング戦略を採用する。
再格付けには、ポイントワイドとリストワイドの両方のジョイントトレーニングを採用し、検索性能をさらに向上させる2つの方法を提供している。
論文 参考訳(メタデータ) (2024-12-02T17:10:16Z) - Enhancing Long Context Performance in LLMs Through Inner Loop Query Mechanism [2.919891871101241]
変換器は入力サイズと計算複雑性の2次スケーリングを持つ。
Retrieval-augmented Generation (RAG)は、検索システムを使用することで、より長いコンテキストを処理できる。
インナーループメモリ拡張ツリー検索(ILM-TR)という新しい手法を導入する。
論文 参考訳(メタデータ) (2024-10-11T19:49:05Z) - UniMEL: A Unified Framework for Multimodal Entity Linking with Large Language Models [0.42832989850721054]
MEL(Multimodal Entities Linking)は、ウィキペディアのようなマルチモーダル知識ベースの参照エンティティに、多モーダルコンテキスト内で曖昧な言及をリンクすることを目的とした重要なタスクである。
既存の方法はMELタスクを過度に複雑にし、視覚的意味情報を見渡す。
大規模言語モデルを用いたマルチモーダル・エンティティ・リンクタスクを処理するための新しいパラダイムを確立する統一フレームワークUniMELを提案する。
論文 参考訳(メタデータ) (2024-07-23T03:58:08Z) - LightPAL: Lightweight Passage Retrieval for Open Domain Multi-Document Summarization [9.739781953744606]
Open-Domain Multi-Document Summarization (ODMDS)は、ユーザクエリに応答して巨大なドキュメントコレクションから要約を生成するタスクである。
ODMDSタスクのオープンエンドクエリでは、従来の検索列サマリズアプローチは不足している。
ODMDSの軽量パス検索手法であるLightPALを提案する。
論文 参考訳(メタデータ) (2024-06-18T10:57:27Z) - Needle In A Multimodal Haystack [79.81804334634408]
本稿では,従来のMLLMの長大なマルチモーダル文書の理解能力を評価するために設計された,最初のベンチマークを示す。
我々のベンチマークには、マルチモーダル検索、カウント、推論の3種類の評価タスクが含まれている。
既存のモデルには、これらのタスク、特に視覚中心の評価において、改善の余地がまだ残っていることを観察する。
論文 参考訳(メタデータ) (2024-06-11T13:09:16Z) - End-to-end Knowledge Retrieval with Multi-modal Queries [50.01264794081951]
ReMuQは、テキストと画像のクエリからコンテンツを統合することで、大規模なコーパスから知識を取得するシステムを必要とする。
本稿では,入力テキストや画像を直接処理し,関連する知識をエンドツーエンドで検索する検索モデルReViz'を提案する。
ゼロショット設定下での2つのデータセットの検索において,優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-01T08:04:12Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
ゼロショットシナリオにおける大規模検索に大規模言語モデル(LLM)を適用するための簡単な手法を提案する。
我々の手法であるRetriever(LameR)は,LLM以外のニューラルモデルに基づいて構築された言語モデルである。
論文 参考訳(メタデータ) (2023-04-27T14:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。