論文の概要: Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space
- arxiv url: http://arxiv.org/abs/2404.00230v3
- Date: Thu, 26 Sep 2024 10:27:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 03:37:09.937252
- Title: Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space
- Title(参考訳): 潜伏拡散空間における潜伏透かし:潜伏拡散空間における透かしの注入と検出
- Authors: Zheling Meng, Bo Peng, Jing Dong,
- Abstract要約: 既存の手法は、画質と透かしの堅牢性のジレンマに直面している。
画像品質の優れた透かしは通常、ぼやけやJPEG圧縮のような攻撃に対して弱い堅牢性を持つ。
本稿では,潜伏拡散空間内の透かしを注入し,検出する潜伏透かしを提案する。
- 参考スコア(独自算出の注目度): 7.082806239644562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Watermarking is a tool for actively identifying and attributing the images generated by latent diffusion models. Existing methods face the dilemma of image quality and watermark robustness. Watermarks with superior image quality usually have inferior robustness against attacks such as blurring and JPEG compression, while watermarks with superior robustness usually significantly damage image quality. This dilemma stems from the traditional paradigm where watermarks are injected and detected in pixel space, relying on pixel perturbation for watermark detection and resilience against attacks. In this paper, we highlight that an effective solution to the problem is to both inject and detect watermarks in the latent diffusion space, and propose Latent Watermark with a progressive training strategy. It weakens the direct connection between quality and robustness and thus alleviates their contradiction. We conduct evaluations on two datasets and against 10 watermark attacks. Six metrics measure the image quality and watermark robustness. Results show that compared to the recently proposed methods such as StableSignature, StegaStamp, RoSteALS, LaWa, TreeRing, and DiffuseTrace, LW not only surpasses them in terms of robustness but also offers superior image quality. Our code will be available at https://github.com/RichardSunnyMeng/LatentWatermark.
- Abstract(参考訳): ウォーターマーキング(英: Watermarking)は、潜伏拡散モデルによって生成された画像を積極的に識別し、帰属するツールである。
既存の手法は、画質と透かしの堅牢性のジレンマに直面している。
画像品質の優れた透かしは通常、ぼかしやJPEG圧縮などの攻撃に対して弱い頑健さを持つが、優れた強靭性を持つ透かしは通常、画像品質に著しくダメージを与える。
このジレンマは、透かしがピクセル空間に注入され、検出される伝統的なパラダイムに由来し、透かしの検出と攻撃に対するレジリエンスにピクセルの摂動に依存している。
本稿では,潜伏拡散空間における透かしの注入と検出を効果的に行うことを強調し,進行的学習戦略を用いた潜伏透かしを提案する。
品質とロバスト性の間の直接的な関係を弱め、矛盾を和らげる。
2つのデータセットと10のウォーターマーク攻撃に対して評価を行う。
6つのメトリクスは、画像の品質と透かしの堅牢性を測定します。
その結果、StableSignature、StegaStamp、RoSteALS、LaWa、TreeRing、DiffuseTraceといった最近提案された手法と比較して、LWは堅牢性だけでなく、画質も優れていることがわかった。
私たちのコードはhttps://github.com/RichardSunnyMeng/LatentWatermarkで公開されます。
関連論文リスト
- ROBIN: Robust and Invisible Watermarks for Diffusion Models with Adversarial Optimization [15.570148419846175]
既存の透かし手法は、堅牢性と隠蔽のバランスをとるという課題に直面している。
本稿では, 透かしを積極的に隠蔽し, より強力な透かしの埋め込みを可能にするための透かし隠蔽法を提案する。
様々な拡散モデルの実験では、画像改ざんであっても透かしが検証可能であることが示されている。
論文 参考訳(メタデータ) (2024-11-06T12:14:23Z) - An undetectable watermark for generative image models [65.31658824274894]
生成画像モデルに対する検出不能な最初の透かし方式を提案する。
特に、検出不能な透かしは、効率的に計算可能なメートル法で画質を劣化させることはない。
提案手法は,擬似乱数誤り訂正符号を用いて拡散モデルの初期潜時間を選択する。
論文 参考訳(メタデータ) (2024-10-09T18:33:06Z) - Certifiably Robust Image Watermark [57.546016845801134]
ジェネレーティブAIは、偽情報やプロパガンダキャンペーンの促進など、多くの社会的懸念を提起する。
ウォーターマークAI生成コンテンツは、これらの懸念に対処するための重要な技術である。
本報告では, 除去・偽造攻撃に対するロバスト性保証を保証した最初の画像透かしを提案する。
論文 参考訳(メタデータ) (2024-07-04T17:56:04Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
本稿ではRAWと呼ばれる堅牢でアジャイルな透かし検出フレームワークを紹介する。
我々は、透かしの存在を検出するために、透かしと共同で訓練された分類器を用いる。
このフレームワークは,透かし画像の誤分類に対する偽陽性率に関する証明可能な保証を提供する。
論文 参考訳(メタデータ) (2024-01-23T22:00:49Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
本研究では, モデル生成出力の品質に及ぼす透かしの影響について検討した。
出力確率分布に影響を与えることなく、透かしを統合することができる。
ウォーターマークの存在は、下流タスクにおけるモデルの性能を損なうものではない。
論文 参考訳(メタデータ) (2023-09-22T12:46:38Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
画像と透かし(T2IW)への共同テキスト生成のための新しいタスクを提案する。
このT2IWスキームは、意味的特徴と透かし信号が画素内で互換性を持つように強制することにより、複合画像を生成する際に、画像品質に最小限のダメージを与える。
提案手法により,画像品質,透かしの可視性,透かしの堅牢性などの顕著な成果が得られた。
論文 参考訳(メタデータ) (2023-09-07T16:12:06Z) - Invisible Image Watermarks Are Provably Removable Using Generative AI [47.25747266531665]
Invisibleの透かしは、所有者によってのみ検出可能な隠されたメッセージを埋め込むことで、画像の著作権を保護する。
我々は、これらの見えない透かしを取り除くために、再生攻撃のファミリーを提案する。
提案手法は,まず画像にランダムノイズを加えて透かしを破壊し,画像を再構成する。
論文 参考訳(メタデータ) (2023-06-02T23:29:28Z) - Certified Neural Network Watermarks with Randomized Smoothing [64.86178395240469]
本稿では,ディープラーニングモデルのための認証型透かし手法を提案する。
我々の透かしは、モデルパラメータが特定のl2しきい値以上変更されない限り、取り外し不可能であることが保証されている。
私たちの透かしは、従来の透かし法に比べて経験的に頑丈です。
論文 参考訳(メタデータ) (2022-07-16T16:06:59Z) - Robust Watermarking using Diffusion of Logo into Autoencoder Feature
Maps [10.072876983072113]
本稿では,透かしのためのエンドツーエンドネットワークを提案する。
画像の内容に基づいて,畳み込みニューラルネットワーク(CNN)を用いて埋め込み強度を制御する。
異なる画像処理攻撃は、モデルの堅牢性を改善するためにネットワーク層としてシミュレートされる。
論文 参考訳(メタデータ) (2021-05-24T05:18:33Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。