論文の概要: An undetectable watermark for generative image models
- arxiv url: http://arxiv.org/abs/2410.07369v2
- Date: Fri, 15 Nov 2024 19:20:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:31:15.544339
- Title: An undetectable watermark for generative image models
- Title(参考訳): 生成画像モデルのための検出不能な透かし
- Authors: Sam Gunn, Xuandong Zhao, Dawn Song,
- Abstract要約: 生成画像モデルに対する検出不能な最初の透かし方式を提案する。
特に、検出不能な透かしは、効率的に計算可能なメートル法で画質を劣化させることはない。
提案手法は,擬似乱数誤り訂正符号を用いて拡散モデルの初期潜時間を選択する。
- 参考スコア(独自算出の注目度): 65.31658824274894
- License:
- Abstract: We present the first undetectable watermarking scheme for generative image models. Undetectability ensures that no efficient adversary can distinguish between watermarked and un-watermarked images, even after making many adaptive queries. In particular, an undetectable watermark does not degrade image quality under any efficiently computable metric. Our scheme works by selecting the initial latents of a diffusion model using a pseudorandom error-correcting code (Christ and Gunn, 2024), a strategy which guarantees undetectability and robustness. We experimentally demonstrate that our watermarks are quality-preserving and robust using Stable Diffusion 2.1. Our experiments verify that, in contrast to every prior scheme we tested, our watermark does not degrade image quality. Our experiments also demonstrate robustness: existing watermark removal attacks fail to remove our watermark from images without significantly degrading the quality of the images. Finally, we find that we can robustly encode 512 bits in our watermark, and up to 2500 bits when the images are not subjected to watermark removal attacks. Our code is available at https://github.com/XuandongZhao/PRC-Watermark.
- Abstract(参考訳): 生成画像モデルに対する検出不能な最初の透かし方式を提案する。
非検出性は、多くの適応クエリをした後でも、ウォーターマークされた画像とウォーターマークされていない画像とを区別できないことを保証します。
特に、検出不能な透かしは、効率的に計算可能なメートル法で画質を劣化させることはない。
提案手法は, 疑似乱数誤り訂正符号 (Christ and Gunn, 2024) を用いて拡散モデルの初期潜伏点を選択することで, 検出不能性とロバスト性を保証する。
我々は, 安定拡散2.1を用いて, 透かしが品質を保ち, 頑健であることを実験的に実証した。
我々の実験は、テストしたすべての以前のスキームとは対照的に、透かしが画質を劣化させていないことを検証した。
既存の透かし除去攻撃は、画像の品質を著しく低下させることなく、画像から透かしを除去することができない。
最後に、透かしに512ビットをエンコードし、画像が透かし除去攻撃を受けない場合には2500ビットまでエンコードできることがわかりました。
私たちのコードはhttps://github.com/XuandongZhao/PRC-Watermarkで公開されています。
関連論文リスト
- ROBIN: Robust and Invisible Watermarks for Diffusion Models with Adversarial Optimization [15.570148419846175]
既存の透かし手法は、堅牢性と隠蔽のバランスをとるという課題に直面している。
本稿では, 透かしを積極的に隠蔽し, より強力な透かしの埋め込みを可能にするための透かし隠蔽法を提案する。
様々な拡散モデルの実験では、画像改ざんであっても透かしが検証可能であることが示されている。
論文 参考訳(メタデータ) (2024-11-06T12:14:23Z) - Certifiably Robust Image Watermark [57.546016845801134]
ジェネレーティブAIは、偽情報やプロパガンダキャンペーンの促進など、多くの社会的懸念を提起する。
ウォーターマークAI生成コンテンツは、これらの懸念に対処するための重要な技術である。
本報告では, 除去・偽造攻撃に対するロバスト性保証を保証した最初の画像透かしを提案する。
論文 参考訳(メタデータ) (2024-07-04T17:56:04Z) - Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space [7.082806239644562]
既存の手法は、画質と透かしの堅牢性のジレンマに直面している。
画像品質の優れた透かしは通常、ぼやけやJPEG圧縮のような攻撃に対して弱い堅牢性を持つ。
本稿では,潜伏拡散空間内の透かしを注入し,検出する潜伏透かしを提案する。
論文 参考訳(メタデータ) (2024-03-30T03:19:50Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
本研究では, モデル生成出力の品質に及ぼす透かしの影響について検討した。
出力確率分布に影響を与えることなく、透かしを統合することができる。
ウォーターマークの存在は、下流タスクにおけるモデルの性能を損なうものではない。
論文 参考訳(メタデータ) (2023-09-22T12:46:38Z) - DiffWA: Diffusion Models for Watermark Attack [8.102989872457156]
ウォーターマーク攻撃のための距離誘導付き条件拡散モデルDiffWAを提案する。
提案手法のコアとなるのは,非透かし画像上の画像から画像への条件付き拡散モデルを訓練することである。
その結果, モデルが良好な効果で透かしを除去し, 透かし抽出のビット誤り率を0.4以上にすることができることがわかった。
論文 参考訳(メタデータ) (2023-06-22T10:45:49Z) - Invisible Image Watermarks Are Provably Removable Using Generative AI [47.25747266531665]
Invisibleの透かしは、所有者によってのみ検出可能な隠されたメッセージを埋め込むことで、画像の著作権を保護する。
我々は、これらの見えない透かしを取り除くために、再生攻撃のファミリーを提案する。
提案手法は,まず画像にランダムノイズを加えて透かしを破壊し,画像を再構成する。
論文 参考訳(メタデータ) (2023-06-02T23:29:28Z) - Certified Neural Network Watermarks with Randomized Smoothing [64.86178395240469]
本稿では,ディープラーニングモデルのための認証型透かし手法を提案する。
我々の透かしは、モデルパラメータが特定のl2しきい値以上変更されない限り、取り外し不可能であることが保証されている。
私たちの透かしは、従来の透かし法に比べて経験的に頑丈です。
論文 参考訳(メタデータ) (2022-07-16T16:06:59Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。