A Simple Yet Effective Approach for Diversified Session-Based Recommendation
- URL: http://arxiv.org/abs/2404.00261v1
- Date: Sat, 30 Mar 2024 06:21:56 GMT
- Title: A Simple Yet Effective Approach for Diversified Session-Based Recommendation
- Authors: Qing Yin, Hui Fang, Zhu Sun, Yew-Soon Ong,
- Abstract summary: We propose an end-to-end framework applied for every existing representative (accuracy-oriented) SBRS, called diversified category-aware attentive SBRS (DCA-SBRS)
It consists of two novel designs: a model-agnostic diversity-oriented loss function, and a non-invasive category-aware attention mechanism.
Our framework helps existing SBRSs achieve extraordinary performance in terms of recommendation diversity and comprehensive performance, without significantly deteriorating recommendation accuracy.
- Score: 28.980166530417645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Session-based recommender systems (SBRSs) have become extremely popular in view of the core capability of capturing short-term and dynamic user preferences. However, most SBRSs primarily maximize recommendation accuracy but ignore user minor preferences, thus leading to filter bubbles in the long run. Only a handful of works, being devoted to improving diversity, depend on unique model designs and calibrated loss functions, which cannot be easily adapted to existing accuracy-oriented SBRSs. It is thus worthwhile to come up with a simple yet effective design that can be used as a plugin to facilitate existing SBRSs on generating a more diversified list in the meantime preserving the recommendation accuracy. In this case, we propose an end-to-end framework applied for every existing representative (accuracy-oriented) SBRS, called diversified category-aware attentive SBRS (DCA-SBRS), to boost the performance on recommendation diversity. It consists of two novel designs: a model-agnostic diversity-oriented loss function, and a non-invasive category-aware attention mechanism. Extensive experiments on three datasets showcase that our framework helps existing SBRSs achieve extraordinary performance in terms of recommendation diversity and comprehensive performance, without significantly deteriorating recommendation accuracy compared to state-of-the-art accuracy-oriented SBRSs.
Related papers
- Preference Diffusion for Recommendation [50.8692409346126]
We propose PreferDiff, a tailored optimization objective for DM-based recommenders.
PreferDiff transforms BPR into a log-likelihood ranking objective to better capture user preferences.
It is the first personalized ranking loss designed specifically for DM-based recommenders.
arXiv Detail & Related papers (2024-10-17T01:02:04Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender systems (RSs) depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables.
Despite the prosperity of lightweight embedding-based RSs, a wide diversity is seen in evaluation protocols.
This study investigates various LERS' performance, efficiency, and cross-task transferability via a thorough benchmarking process.
arXiv Detail & Related papers (2024-06-25T07:45:00Z) - ERASE: Benchmarking Feature Selection Methods for Deep Recommender Systems [40.838320650137625]
This paper presents ERASE, a comprehensive bEnchmaRk for feAture SElection for Deep Recommender Systems (DRS)
ERASE comprises a thorough evaluation of eleven feature selection methods, covering both traditional and deep learning approaches.
Our code is available online for ease of reproduction.
arXiv Detail & Related papers (2024-03-19T11:49:35Z) - Efficient Prompt Optimization Through the Lens of Best Arm Identification [50.56113809171805]
This work provides a principled framework, TRIPLE, to efficiently perform prompt selection under an explicit budget constraint.
It is built on a novel connection established between prompt optimization and fixed-budget best arm identification (BAI-FB) in multi-armed bandits (MAB)
arXiv Detail & Related papers (2024-02-15T05:31:13Z) - Sequential Recommendation with Controllable Diversification: Representation Degeneration and Diversity [59.24517649169952]
We argue that the representation degeneration issue is the root cause of insufficient recommendation diversity in existing SR methods.
We propose a novel Singular sPectrum sMoothing regularization for Recommendation (SPMRec), which acts as a controllable surrogate to alleviate the degeneration.
arXiv Detail & Related papers (2023-06-21T02:42:37Z) - Zero-shot Task Preference Addressing Enabled by Imprecise Bayesian
Continual Learning [19.11678487931003]
We propose Imprecise Bayesian Continual Learning (IBCL) to address preferences on task-performance trade-offs.
IBCL does not require any additional training overhead to construct preference-addressing models from its knowledge base.
We show that models obtained by IBCL have guarantees in identifying the preferred parameters.
arXiv Detail & Related papers (2023-05-24T06:39:00Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
We introduce Scalarized Multi-Objective Reinforcement Learning (SMORL) for the Recommender Systems (RS) setting.
SMORL agent augments standard recommendation models with additional RL layers that enforce it to simultaneously satisfy three principal objectives: accuracy, diversity, and novelty of recommendations.
Our experimental results on two real-world datasets reveal a substantial increase in aggregate diversity, a moderate increase in accuracy, reduced repetitiveness of recommendations, and demonstrate the importance of reinforcing diversity and novelty as complementary objectives.
arXiv Detail & Related papers (2021-10-28T13:22:45Z) - Understanding the Effects of Adversarial Personalized Ranking
Optimization Method on Recommendation Quality [6.197934754799158]
We model the learning characteristics of the Bayesian Personalized Ranking (BPR) and APR optimization frameworks.
We show that APR amplifies the popularity bias more than BPR due to an unbalanced number of received positive updates from short-head items.
arXiv Detail & Related papers (2021-07-29T10:22:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.