A Simple Yet Effective Approach for Diversified Session-Based Recommendation
- URL: http://arxiv.org/abs/2404.00261v1
- Date: Sat, 30 Mar 2024 06:21:56 GMT
- Title: A Simple Yet Effective Approach for Diversified Session-Based Recommendation
- Authors: Qing Yin, Hui Fang, Zhu Sun, Yew-Soon Ong,
- Abstract summary: We propose an end-to-end framework applied for every existing representative (accuracy-oriented) SBRS, called diversified category-aware attentive SBRS (DCA-SBRS)
It consists of two novel designs: a model-agnostic diversity-oriented loss function, and a non-invasive category-aware attention mechanism.
Our framework helps existing SBRSs achieve extraordinary performance in terms of recommendation diversity and comprehensive performance, without significantly deteriorating recommendation accuracy.
- Score: 28.980166530417645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Session-based recommender systems (SBRSs) have become extremely popular in view of the core capability of capturing short-term and dynamic user preferences. However, most SBRSs primarily maximize recommendation accuracy but ignore user minor preferences, thus leading to filter bubbles in the long run. Only a handful of works, being devoted to improving diversity, depend on unique model designs and calibrated loss functions, which cannot be easily adapted to existing accuracy-oriented SBRSs. It is thus worthwhile to come up with a simple yet effective design that can be used as a plugin to facilitate existing SBRSs on generating a more diversified list in the meantime preserving the recommendation accuracy. In this case, we propose an end-to-end framework applied for every existing representative (accuracy-oriented) SBRS, called diversified category-aware attentive SBRS (DCA-SBRS), to boost the performance on recommendation diversity. It consists of two novel designs: a model-agnostic diversity-oriented loss function, and a non-invasive category-aware attention mechanism. Extensive experiments on three datasets showcase that our framework helps existing SBRSs achieve extraordinary performance in terms of recommendation diversity and comprehensive performance, without significantly deteriorating recommendation accuracy compared to state-of-the-art accuracy-oriented SBRSs.
Related papers
- Preference Diffusion for Recommendation [50.8692409346126]
We propose PreferDiff, a tailored optimization objective for DM-based recommenders.
PreferDiff transforms BPR into a log-likelihood ranking objective to better capture user preferences.
It is the first personalized ranking loss designed specifically for DM-based recommenders.
arXiv Detail & Related papers (2024-10-17T01:02:04Z) - DLCRec: A Novel Approach for Managing Diversity in LLM-Based Recommender Systems [9.433227503973077]
We propose a novel framework designed to enable fine-grained control over diversity in LLM-based recommendations.
Unlike traditional methods, DLCRec adopts a fine-grained task decomposition strategy, breaking down the recommendation process into three sub-tasks.
We introduce two data augmentation techniques that enhance the model's robustness to noisy and out-of-distribution data.
arXiv Detail & Related papers (2024-08-22T15:10:56Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - A Reproducible Analysis of Sequential Recommender Systems [13.987953631479662]
SequentialEnsurer Systems (SRSs) have emerged as a highly efficient approach to recommendation systems.
Existing works exhibit shortcomings in replicability of results, leading to inconsistent statements across papers.
Our work fills these gaps by standardising data pre-processing and model implementations.
arXiv Detail & Related papers (2024-08-07T16:23:29Z) - Are We Really Achieving Better Beyond-Accuracy Performance in Next Basket Recommendation? [57.91114305844153]
Next basket recommendation (NBR) is a special type of sequential recommendation that is increasingly receiving attention.
Recent studies into NBR have found a substantial performance difference between recommending repeat items and explore items.
We propose a plug-and-play two-step repetition-exploration framework that treats repeat items and explores items separately.
arXiv Detail & Related papers (2024-05-02T09:59:35Z) - ERASE: Benchmarking Feature Selection Methods for Deep Recommender Systems [40.838320650137625]
This paper presents ERASE, a comprehensive bEnchmaRk for feAture SElection for Deep Recommender Systems (DRS)
ERASE comprises a thorough evaluation of eleven feature selection methods, covering both traditional and deep learning approaches.
Our code is available online for ease of reproduction.
arXiv Detail & Related papers (2024-03-19T11:49:35Z) - Efficient Prompt Optimization Through the Lens of Best Arm Identification [50.56113809171805]
This work provides a principled framework, TRIPLE, to efficiently perform prompt selection under an explicit budget constraint.
It is built on a novel connection established between prompt optimization and fixed-budget best arm identification (BAI-FB) in multi-armed bandits (MAB)
arXiv Detail & Related papers (2024-02-15T05:31:13Z) - Sequential Recommendation with Controllable Diversification: Representation Degeneration and Diversity [59.24517649169952]
We argue that the representation degeneration issue is the root cause of insufficient recommendation diversity in existing SR methods.
We propose a novel Singular sPectrum sMoothing regularization for Recommendation (SPMRec), which acts as a controllable surrogate to alleviate the degeneration.
arXiv Detail & Related papers (2023-06-21T02:42:37Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
We introduce Scalarized Multi-Objective Reinforcement Learning (SMORL) for the Recommender Systems (RS) setting.
SMORL agent augments standard recommendation models with additional RL layers that enforce it to simultaneously satisfy three principal objectives: accuracy, diversity, and novelty of recommendations.
Our experimental results on two real-world datasets reveal a substantial increase in aggregate diversity, a moderate increase in accuracy, reduced repetitiveness of recommendations, and demonstrate the importance of reinforcing diversity and novelty as complementary objectives.
arXiv Detail & Related papers (2021-10-28T13:22:45Z) - Understanding the Effects of Adversarial Personalized Ranking
Optimization Method on Recommendation Quality [6.197934754799158]
We model the learning characteristics of the Bayesian Personalized Ranking (BPR) and APR optimization frameworks.
We show that APR amplifies the popularity bias more than BPR due to an unbalanced number of received positive updates from short-head items.
arXiv Detail & Related papers (2021-07-29T10:22:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.