Efficient Prompt Optimization Through the Lens of Best Arm Identification
- URL: http://arxiv.org/abs/2402.09723v3
- Date: Thu, 30 May 2024 19:40:21 GMT
- Title: Efficient Prompt Optimization Through the Lens of Best Arm Identification
- Authors: Chengshuai Shi, Kun Yang, Zihan Chen, Jundong Li, Jing Yang, Cong Shen,
- Abstract summary: This work provides a principled framework, TRIPLE, to efficiently perform prompt selection under an explicit budget constraint.
It is built on a novel connection established between prompt optimization and fixed-budget best arm identification (BAI-FB) in multi-armed bandits (MAB)
- Score: 50.56113809171805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The remarkable instruction-following capability of large language models (LLMs) has sparked a growing interest in automatically finding good prompts, i.e., prompt optimization. Most existing works follow the scheme of selecting from a pre-generated pool of candidate prompts. However, these designs mainly focus on the generation strategy, while limited attention has been paid to the selection method. Especially, the cost incurred during the selection (e.g., accessing LLM and evaluating the responses) is rarely explicitly considered. To overcome this limitation, this work provides a principled framework, TRIPLE, to efficiently perform prompt selection under an explicit budget constraint. TRIPLE is built on a novel connection established between prompt optimization and fixed-budget best arm identification (BAI-FB) in multi-armed bandits (MAB); thus, it is capable of leveraging the rich toolbox from BAI-FB systematically and also incorporating unique characteristics of prompt optimization. Extensive experiments on multiple well-adopted tasks using various LLMs demonstrate the remarkable performance improvement of TRIPLE over baselines while satisfying the limited budget constraints. As an extension, variants of TRIPLE are proposed to efficiently select examples for few-shot prompts, also achieving superior empirical performance.
Related papers
- AMPO: Automatic Multi-Branched Prompt Optimization [43.586044739174646]
We present AMPO, an automatic prompt optimization method that can iteratively develop a multi-branched prompt using failure cases as feedback.
In experiments across five tasks, AMPO consistently achieves the best results.
arXiv Detail & Related papers (2024-10-11T10:34:28Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
We introduce a novel greedy-style subset selection algorithm for batch acquisition.
Our experiments on the red fluorescent proteins show that our proposed method achieves the baseline performance in 1.69x fewer queries.
arXiv Detail & Related papers (2024-06-21T05:57:08Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
Large language models (LLMs) have shown impressive capabilities in real-world applications.
The quality of these exemplars in the prompt greatly impacts performance.
Existing methods fail to adequately account for the impact of exemplar ordering on the performance.
arXiv Detail & Related papers (2024-05-25T08:23:05Z) - PhaseEvo: Towards Unified In-Context Prompt Optimization for Large
Language Models [9.362082187605356]
We present PhaseEvo, an efficient automatic prompt optimization framework that combines the generative capability of LLMs with the global search proficiency of evolution algorithms.
PhaseEvo significantly outperforms the state-of-the-art baseline methods by a large margin whilst maintaining good efficiency.
arXiv Detail & Related papers (2024-02-17T17:47:10Z) - Cost-Effective In-Context Learning for Entity Resolution: A Design Space
Exploration [26.65259285701739]
We provide a comprehensive study to investigate how to develop a cost-effective batch prompting approach to ER.
We find that batch prompting is very cost-effective for ER, compared with PLM-based methods fine-tuned with extensive labeled data.
We also devise a covering-based demonstration selection strategy that achieves an effective balance between matching accuracy and monetary cost.
arXiv Detail & Related papers (2023-12-07T02:09:27Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - Robust Prompt Optimization for Large Language Models Against
Distribution Shifts [80.6757997074956]
Large Language Model (LLM) has demonstrated significant ability in various Natural Language Processing tasks.
We propose a new problem of robust prompt optimization for LLMs against distribution shifts.
This problem requires the prompt optimized over the labeled source group can simultaneously generalize to an unlabeled target group.
arXiv Detail & Related papers (2023-05-23T11:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.