論文の概要: ST-LLM: Large Language Models Are Effective Temporal Learners
- arxiv url: http://arxiv.org/abs/2404.00308v1
- Date: Sat, 30 Mar 2024 10:11:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 04:30:18.822766
- Title: ST-LLM: Large Language Models Are Effective Temporal Learners
- Title(参考訳): ST-LLM:大規模言語モデルは効果的な時間学習者である
- Authors: Ruyang Liu, Chen Li, Haoran Tang, Yixiao Ge, Ying Shan, Ge Li,
- Abstract要約: 大規模言語モデル(LLM)は、テキストの理解と生成において印象的な能力を示した。
ビデオベースの対話システムでビデオを効果的にエンコードし、理解する方法は、まだ解決されていない。
LLM内部の時空間シーケンスをモデル化したビデオLLMベースラインST-LLMを提案する。
- 参考スコア(独自算出の注目度): 58.79456373423189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation, prompting research efforts towards video LLMs to facilitate human-AI interaction at the video level. However, how to effectively encode and understand videos in video-based dialogue systems remains to be solved. In this paper, we investigate a straightforward yet unexplored question: Can we feed all spatial-temporal tokens into the LLM, thus delegating the task of video sequence modeling to the LLMs? Surprisingly, this simple approach yields significant improvements in video understanding. Based upon this, we propose ST-LLM, an effective video-LLM baseline with Spatial-Temporal sequence modeling inside LLM. Furthermore, to address the overhead and stability issues introduced by uncompressed video tokens within LLMs, we develop a dynamic masking strategy with tailor-made training objectives. For particularly long videos, we have also designed a global-local input module to balance efficiency and effectiveness. Consequently, we harness LLM for proficient spatial-temporal modeling, while upholding efficiency and stability. Extensive experimental results attest to the effectiveness of our method. Through a more concise model and training pipeline, ST-LLM establishes a new state-of-the-art result on VideoChatGPT-Bench and MVBench. Codes have been available at https://github.com/TencentARC/ST-LLM.
- Abstract(参考訳): 大規模言語モデル(LLM)は、テキストの理解と生成において印象的な能力を示し、ビデオレベルでの人間とAIの相互作用を促進するためのビデオLLMの研究を促進する。
しかし,ビデオベースの対話システムにおいて,映像を効果的にエンコードし,理解する方法は未解決である。
本稿では,全時空間トークンをLLMに供給し,ビデオシーケンスモデリングのタスクをLLMに委譲できるか,という,単純だが未解明の質問について検討する。
驚くべきことに、この単純なアプローチは、ビデオ理解の大幅な改善をもたらす。
そこで本研究では,LLM内の空間時間シーケンスをモデル化したビデオLLMベースラインST-LLMを提案する。
さらに,LLM内の非圧縮ビデオトークンがもたらすオーバーヘッドと安定性の問題に対処するため,我々はテーラーメイドのトレーニング目標を用いた動的マスキング戦略を開発した。
特に長いビデオでは、効率と効率のバランスをとるために、グローバルなローカルな入力モジュールも設計しました。
その結果,LLMは空間時間モデリングに有効であり,効率と安定性を保ちながら有効であることがわかった。
本手法の有効性を実験的に検証した。
より簡潔なモデルとトレーニングパイプラインを通じて、ST-LLMはVideoChatGPT-BenchとMVBenchで、最先端の新たな結果を確立する。
コードはhttps://github.com/TencentARC/ST-LLM.comで公開されている。
関連論文リスト
- Can MLLMs Guide Weakly-Supervised Temporal Action Localization Tasks? [6.7065734065794835]
MLLM4WTALと呼ばれる新しい学習パラダイムを導入する。
MLLMのポテンシャルを利用して、時間的アクションキーセマンティクスと完全なセマンティクスの事前を提供する。
キーセマンティックマッチング(KSM)と完全セマンティック再構成(CSR)の2つの異なるモジュールを統合することでこれを実現できる。
論文 参考訳(メタデータ) (2024-11-13T09:37:24Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - From Image to Video, what do we need in multimodal LLMs? [19.85928004619801]
MLLM(Multimodal Large Language Models)は、マルチモーダル情報を理解する上で重要な機能を示す。
画像LLMからの映像LLMのための資源効率の高い開発パイプラインRED-VILLMを提案する。
我々のアプローチは、よりコスト効率が高くスケーラブルなマルチモーダルモデルの進歩の可能性を強調します。
論文 参考訳(メタデータ) (2024-04-18T02:43:37Z) - Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts [10.929547354171723]
本稿では,言語モデルロールアウト(KALM)の知識エージェントを紹介する。
大規模言語モデル(LLM)から、オフラインの強化学習手法によってエージェントが容易に学習できる想像上のロールアウトの形で知識を抽出する。
未確認の目標を持つタスクの実行において46%の成功率を達成し、ベースラインメソッドによって達成された26%の成功率を大幅に上回る。
論文 参考訳(メタデータ) (2024-04-14T13:19:40Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
我々は,音声基礎エンコーダと大規模言語モデル(LLM)を用いて,音声処理の分野で最も重要な課題の1つを解決することに注力する。
最近の研究は、音声エンコーダの出力を時間的に圧縮したり、プロジェクタのモーダルアライメントに対処したり、LLMのパラメータ効率の良い微調整を利用するといった複雑な設計をしている。
そこで本研究では,市販の音声エンコーダLLMと,トレーニング可能な唯一の線形プロジェクタの単純な構成がASRタスクに適しているのに対して,繊細な設計は必要ないことを発見した。
論文 参考訳(メタデータ) (2024-02-13T23:25:04Z) - Video Understanding with Large Language Models: A Survey [97.29126722004949]
言語・マルチモーダルタスクにおける大規模言語モデル(LLM)の顕著な機能を考えると,近年の映像理解の進歩について概観する。
Vid-LLMの創発的能力は驚くほど進歩しており、特にオープンな多粒性推論能力がある。
本調査は,Vid-LLMのタスク,データセット,ベンチマーク,評価方法論に関する総合的研究である。
論文 参考訳(メタデータ) (2023-12-29T01:56:17Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
マルチモーダルな大言語モデル (MLLM) が注目されている。
この作業は、LLMがより視覚的な言語に関連したタスクに取り組むことを可能にすることを目的としている。
InfMLLMは、最先端(SOTA)パフォーマンスまたは最近のMLLMに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-12T09:58:16Z) - VideoLLM: Modeling Video Sequence with Large Language Models [70.32832021713864]
既存のビデオ理解モデルは、しばしばタスク固有であり、多様なタスクを扱う包括的な能力に欠ける。
我々は,事前学習したLLMのシーケンス推論機能を活用する,VideoLLMという新しいフレームワークを提案する。
VideoLLMは慎重に設計されたModality and Semantic Translatorを組み込んでおり、様々なモードからの入力を統一されたトークンシーケンスに変換する。
論文 参考訳(メタデータ) (2023-05-22T17:51:22Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
大規模言語モデル(LLM)はAIの分野に革命をもたらし、様々なタスクで前例のない能力を示している。
本稿では,LLMのパワーを利用する効率的なLLM推論パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:06Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。