論文の概要: Harmonizing Light and Darkness: A Symphony of Prior-guided Data Synthesis and Adaptive Focus for Nighttime Flare Removal
- arxiv url: http://arxiv.org/abs/2404.00313v1
- Date: Sat, 30 Mar 2024 10:37:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 04:20:25.961209
- Title: Harmonizing Light and Darkness: A Symphony of Prior-guided Data Synthesis and Adaptive Focus for Nighttime Flare Removal
- Title(参考訳): 光と暗さの調和: 事前誘導データ合成と夜間フレア除去のための適応焦点のシンフォニー
- Authors: Lishen Qu, Shihao Zhou, Jinshan Pan, Jinglei Shi, Duosheng Chen, Jufeng Yang,
- Abstract要約: インセンス光源は、夜間に撮影画像にフレアを発生させることが多く、視覚的品質を劣化させ、下流の用途に悪影響を及ぼす。
効果的なフレア除去ネットワークをトレーニングするためには、信頼できるデータセットが不可欠である。
フレアの明るさが照明法則に合致するマルチフレア画像を含むフレア7K*という先行誘導型データセットを合成する。
クリーンな背景領域を適応的にマスキングし,フレアに強く影響された領域にフォーカスするモデルを支援するためのプラグイン・アンド・プレイ適応型フォーカス・モジュール (AFM) を提案する。
- 参考スコア(独自算出の注目度): 44.35766203309201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intense light sources often produce flares in captured images at night, which deteriorates the visual quality and negatively affects downstream applications. In order to train an effective flare removal network, a reliable dataset is essential. The mainstream flare removal datasets are semi-synthetic to reduce human labour, but these datasets do not cover typical scenarios involving multiple scattering flares. To tackle this issue, we synthesize a prior-guided dataset named Flare7K*, which contains multi-flare images where the brightness of flares adheres to the laws of illumination. Besides, flares tend to occupy localized regions of the image but existing networks perform flare removal on the entire image and sometimes modify clean areas incorrectly. Therefore, we propose a plug-and-play Adaptive Focus Module (AFM) that can adaptively mask the clean background areas and assist models in focusing on the regions severely affected by flares. Extensive experiments demonstrate that our data synthesis method can better simulate real-world scenes and several models equipped with AFM achieve state-of-the-art performance on the real-world test dataset.
- Abstract(参考訳): インセンス光源は、夜間に撮影画像にフレアを発生させることが多く、視覚的品質を劣化させ、下流の用途に悪影響を及ぼす。
効果的なフレア除去ネットワークをトレーニングするためには、信頼できるデータセットが不可欠である。
主流のフレア除去データセットは、人間の労力を減らすために半合成であるが、これらのデータセットは複数の散乱フレアを含む典型的なシナリオをカバーしていない。
この問題に対処するために、フレアの明るさが照明法則に従属するマルチフレア画像を含むFrare7K*という先行誘導データセットを合成する。
さらに、フレアは画像の局所的な領域を占有する傾向にあるが、既存のネットワークは画像全体に対してフレア除去を行い、時にクリーンな領域を誤って修正する。
そこで本稿では, クリーンな背景領域を適応的に隠蔽し, フレアの影響を受けやすい領域にフォーカスするモデルを支援するための, プラグイン・アンド・プレイ適応型フォーカスモジュール(AFM)を提案する。
大規模な実験により,我々のデータ合成手法は実世界のシーンをより良くシミュレートできることが示された。
関連論文リスト
- DifFRelight: Diffusion-Based Facial Performance Relighting [12.909429637057343]
拡散に基づく画像から画像への変換を用いた,自由視点顔の表情のリライティングのための新しいフレームワークを提案する。
我々は、正確な照明制御のための拡散モデルを訓練し、フラットライト入力からの顔画像の高忠実度化を可能にする。
このモデルは、目の反射、地表面散乱、自影、半透明といった複雑な照明効果を正確に再現する。
論文 参考訳(メタデータ) (2024-10-10T17:56:44Z) - MFDNet: Multi-Frequency Deflare Network for Efficient Nighttime Flare Removal [39.70102431268123]
ラプラシアンピラミッドに基づくMFDNet(MFDNet)を提案する。
我々のネットワークは、フレア崩壊した画像を低周波帯と高周波帯に分解し、画像内の照明と内容情報を効果的に分離する。
実験により,本手法は実空間および合成画像の夜間フレア除去において,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-06-26T05:31:36Z) - Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
フレアアーティファクトは、画像の視覚的品質と下流のコンピュータビジョンタスクに影響を与える。
現在の方法では、画像信号処理パイプラインにおける自動露光やトーンマッピングは考慮されていない。
本稿では、ISPを再検討し、より信頼性の高い光源回収戦略を設計することで、レンズフレア除去性能を向上させるソリューションを提案する。
論文 参考訳(メタデータ) (2023-08-31T04:58:17Z) - Toward Real Flare Removal: A Comprehensive Pipeline and A New Benchmark [12.1632995709273]
本稿では,フレア劣化を伴うデータペア生成手法を提案する。
散乱フレアの類似性と反射ゴーストの対称効果を実現する。
また,散乱と反射フレアの影響をそれぞれ処理する実写パイプラインを構築した。
論文 参考訳(メタデータ) (2023-06-28T02:57:25Z) - Flare7K++: Mixing Synthetic and Real Datasets for Nighttime Flare
Removal and Beyond [77.72043833102191]
962個の実撮影フレア画像(Flare-R)と7000個の合成フレア画像(Flare7K)からなる夜間フレア除去データセットを初めて導入する。
Flare7Kと比較して、Frare7K++は、合成フレアのみを使用することで、光源周辺の複雑な劣化を取り除くのに特に効果的である。
この問題に対処するために、Frare7K++で光源のアノテーションを付加し、レンズフレアを除去しながら光源を保存するための新しいエンドツーエンドパイプラインを提案する。
論文 参考訳(メタデータ) (2023-06-07T08:27:44Z) - Nighttime Smartphone Reflective Flare Removal Using Optical Center
Symmetry Prior [81.64647648269889]
反射フレア(英: Reflective flare)は、レンズの内部に光が反射し、明るい点や「ゴースト効果」を引き起こす現象である。
我々は、反射フレアと光源が常にレンズの光学中心の周囲に対称であることを示す光中心対称性を事前に提案する。
多様なリアルな反射フレアパターンを含むブラケットフレアと呼ばれる最初の反射フレア除去データセットを作成します。
論文 参考訳(メタデータ) (2023-03-27T09:44:40Z) - Flare7K: A Phenomenological Nighttime Flare Removal Dataset [83.38205781536578]
最初の夜間フレア除去データセットであるFrare7Kを紹介する。
25種類の散乱フレアと10種類の反射フレアからなる、5,000個の散乱と2,000個の反射フレア画像を提供する。
ペア化されたデータにより、現実世界で撮影されたフレア崩壊画像の復元を効果的に行うことができる。
論文 参考訳(メタデータ) (2022-10-12T20:17:24Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
そこで本研究では,現実の汚職とミスアライメントされたトレーニング画像からなる,新しい低照度画像強調データセットを提案する。
本モデルでは,新たに提案したデータセットと,他の一般的な低照度データセットの両方に対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-01-10T03:12:52Z) - Deep Lighting Environment Map Estimation from Spherical Panoramas [0.0]
本稿では,単一のLDR単分子球状パノラマからHDR照明環境マップを推定するデータ駆動モデルを提案する。
データジェネレータと監視機構として画像ベースのリライティングを活用するために,表面形状の可用性を活用する。
論文 参考訳(メタデータ) (2020-05-16T14:23:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。