論文の概要: MFDNet: Multi-Frequency Deflare Network for Efficient Nighttime Flare Removal
- arxiv url: http://arxiv.org/abs/2406.18079v1
- Date: Wed, 26 Jun 2024 05:31:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 14:28:34.649624
- Title: MFDNet: Multi-Frequency Deflare Network for Efficient Nighttime Flare Removal
- Title(参考訳): MFDNet:高効率夜間フレア除去のためのマルチ周波数ディフレアネットワーク
- Authors: Yiguo Jiang, Xuhang Chen, Chi-Man Pun, Shuqiang Wang, Wei Feng,
- Abstract要約: ラプラシアンピラミッドに基づくMFDNet(MFDNet)を提案する。
我々のネットワークは、フレア崩壊した画像を低周波帯と高周波帯に分解し、画像内の照明と内容情報を効果的に分離する。
実験により,本手法は実空間および合成画像の夜間フレア除去において,最先端の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 39.70102431268123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When light is scattered or reflected accidentally in the lens, flare artifacts may appear in the captured photos, affecting the photos' visual quality. The main challenge in flare removal is to eliminate various flare artifacts while preserving the original content of the image. To address this challenge, we propose a lightweight Multi-Frequency Deflare Network (MFDNet) based on the Laplacian Pyramid. Our network decomposes the flare-corrupted image into low and high-frequency bands, effectively separating the illumination and content information in the image. The low-frequency part typically contains illumination information, while the high-frequency part contains detailed content information. So our MFDNet consists of two main modules: the Low-Frequency Flare Perception Module (LFFPM) to remove flare in the low-frequency part and the Hierarchical Fusion Reconstruction Module (HFRM) to reconstruct the flare-free image. Specifically, to perceive flare from a global perspective while retaining detailed information for image restoration, LFFPM utilizes Transformer to extract global information while utilizing a convolutional neural network to capture detailed local features. Then HFRM gradually fuses the outputs of LFFPM with the high-frequency component of the image through feature aggregation. Moreover, our MFDNet can reduce the computational cost by processing in multiple frequency bands instead of directly removing the flare on the input image. Experimental results demonstrate that our approach outperforms state-of-the-art methods in removing nighttime flare on real-world and synthetic images from the Flare7K dataset. Furthermore, the computational complexity of our model is remarkably low.
- Abstract(参考訳): レンズに光が散らばったり、誤って反射されたりすると、撮影写真にフレア・アーティファクトが現れ、画像の視覚的品質に影響を及ぼす。
フレア除去の主な課題は、画像のオリジナルコンテンツを保存しながら、様々なフレアアーティファクトを除去することである。
この課題に対処するために,ラプラシアンピラミッドに基づくMFDNet(MFDNet)を提案する。
我々のネットワークは、フレア崩壊した画像を低周波帯と高周波帯に分解し、画像内の照明と内容情報を効果的に分離する。
低周波部は通常照明情報を含むが、高周波部は詳細な内容情報を含む。
我々のMFDNetは、低周波フレア知覚モジュール (LFFPM) と、フレアのない画像を再構成するための階層的融合再構成モジュール (HFRM) の2つの主要モジュールから構成されている。
具体的には、画像復元のための詳細な情報を保持しながら、世界的視点からフレアを知覚するために、LFFPMはTransformerを使用して、畳み込みニューラルネットワークを使用してグローバル情報を抽出し、詳細なローカル特徴をキャプチャする。
そして、HFRMは、LFFPMの出力を特徴集約を介して画像の高周波成分と徐々に融合させる。
さらに、MFDNetは入力画像のフレアを直接除去するのではなく、複数の周波数帯域で処理することで計算コストを削減できる。
実験の結果,Frare7Kデータセットから実世界の夜間フレアや合成画像を取り除き,最先端の手法よりも優れていることがわかった。
さらに、我々のモデルの計算複雑性は著しく低い。
関連論文リスト
- RSHazeDiff: A Unified Fourier-aware Diffusion Model for Remote Sensing Image Dehazing [32.16602874389847]
Hazeはリモートセンシング画像の視覚的品質を著しく低下させる。
本稿では,RSHazeDiffと呼ばれるリモートセンシング画像デハージングのための新しいFourier-aware拡散モデルを提案する。
合成および実世界のベンチマークの実験は、最先端の手法よりもRSHazeDiffの好ましい性能を検証する。
論文 参考訳(メタデータ) (2024-05-15T04:22:27Z) - Spatial-frequency Dual-Domain Feature Fusion Network for Low-Light Remote Sensing Image Enhancement [49.15531684596958]
低照度リモートセンシング画像強調のためのDFFN(Dual-Domain Feature Fusion Network)を提案する。
第1フェーズは振幅情報を学習して画像輝度を復元し、第2フェーズは位相情報を学習して詳細を洗練させる。
我々は、現在の暗光リモートセンシング画像強調におけるデータセットの欠如に対応するために、2つの暗光リモートセンシングデータセットを構築した。
論文 参考訳(メタデータ) (2024-04-26T13:21:31Z) - Harmonizing Light and Darkness: A Symphony of Prior-guided Data Synthesis and Adaptive Focus for Nighttime Flare Removal [44.35766203309201]
インセンス光源は、夜間に撮影画像にフレアを発生させることが多く、視覚的品質を劣化させ、下流の用途に悪影響を及ぼす。
効果的なフレア除去ネットワークをトレーニングするためには、信頼できるデータセットが不可欠である。
フレアの明るさが照明法則に合致するマルチフレア画像を含むフレア7K*という先行誘導型データセットを合成する。
クリーンな背景領域を適応的にマスキングし,フレアに強く影響された領域にフォーカスするモデルを支援するためのプラグイン・アンド・プレイ適応型フォーカス・モジュール (AFM) を提案する。
論文 参考訳(メタデータ) (2024-03-30T10:37:56Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
本稿では,画像強調や超解像といった深層学習に基づく画像変換手法における共通の課題に対処することを目的とする。
本稿では、周波数領域内における分布距離を計算するための、新しいシンプルな周波数分布損失(FDL)を提案する。
本手法は,周波数領域におけるグローバル情報の思慮深い活用により,トレーニング制約として実証的に有効であることが実証された。
論文 参考訳(メタデータ) (2024-02-28T09:27:41Z) - Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
フレアアーティファクトは、画像の視覚的品質と下流のコンピュータビジョンタスクに影響を与える。
現在の方法では、画像信号処理パイプラインにおける自動露光やトーンマッピングは考慮されていない。
本稿では、ISPを再検討し、より信頼性の高い光源回収戦略を設計することで、レンズフレア除去性能を向上させるソリューションを提案する。
論文 参考訳(メタデータ) (2023-08-31T04:58:17Z) - Seeing Through The Noisy Dark: Toward Real-world Low-Light Image
Enhancement and Denoising [125.56062454927755]
現実の低照度環境は通常、光やハードウェアの限界が不足しているため、視界が低く、騒音が重い。
我々は、RLED-Net(Real-world Low-light Enhancement & Denoising Network)と呼ばれる新しいエンドツーエンド手法を提案する。
論文 参考訳(メタデータ) (2022-10-02T14:57:23Z) - DPFNet: A Dual-branch Dilated Network with Phase-aware Fourier
Convolution for Low-light Image Enhancement [1.2645663389012574]
低照度画像の高精細化は、低照度画像から通常の露光画像を復元することを目的とした古典的なコンピュータビジョン問題である。
この分野でよく使われる畳み込みニューラルネットワークは、空間領域の低周波局所構造の特徴をサンプリングするのに長けている。
周波数位相のセマンティクスの制約の下で高品質なテクスチャの詳細を復元できるフーリエ係数を用いた新しいモジュールを提案する。
論文 参考訳(メタデータ) (2022-09-16T13:56:09Z) - Multi-scale frequency separation network for image deblurring [10.511076996096117]
本稿では,マルチスケール周波数分離ネットワーク (MSFS-Net) を用いた画像分解手法を提案する。
MSFS-Netは複数のスケールで画像の低周波・高周波情報をキャプチャする。
ベンチマークデータセットの実験により,提案したネットワークが最先端の性能を達成することが示された。
論文 参考訳(メタデータ) (2022-06-01T23:48:35Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
光学フローベースやエンド・ツー・エンドのディープラーニングベースのソリューションのような既存の方法は、詳細な復元やゴーストを除去する際にエラーを起こしやすい。
本研究では、周波数領域でHDR融合を行うための新しい周波数誘導型エンド・ツー・エンドディープニューラルネットワーク(FNet)を提案し、ウェーブレット変換(DWT)を用いて入力を異なる周波数帯域に分解する。
低周波信号は特定のゴーストアーティファクトを避けるために使用され、高周波信号は詳細を保存するために使用される。
論文 参考訳(メタデータ) (2021-08-03T12:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。