論文の概要: Planning and Editing What You Retrieve for Enhanced Tool Learning
- arxiv url: http://arxiv.org/abs/2404.00450v2
- Date: Thu, 4 Apr 2024 05:33:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 13:33:07.516135
- Title: Planning and Editing What You Retrieve for Enhanced Tool Learning
- Title(参考訳): ツール学習の強化を目的とした検索項目の計画と編集
- Authors: Tenghao Huang, Dongwon Jung, Muhao Chen,
- Abstract要約: 本稿では,Planning, Learning, and Understanding for TOols(P&R)とEdit-and-Ground(E&G)のパラダイムを取り入れた新しいPLUTO(Planning, Learning, and Understanding for TOols)アプローチを提案する。
実験の結果、これらのパラダイムはツール検索タスクにおけるリコールとNDCGを大幅に改善し、現在の最先端モデルを大きく上回っていることがわかった。
- 参考スコア(独自算出の注目度): 31.963485987789852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in integrating external tools with Large Language Models (LLMs) have opened new frontiers, with applications in mathematical reasoning, code generators, and smart assistants. However, existing methods, relying on simple one-time retrieval strategies, fall short on effectively and accurately shortlisting relevant tools. This paper introduces a novel PLUTO (Planning, Learning, and Understanding for TOols) approach, encompassing `Plan-and-Retrieve (P&R)` and `Edit-and-Ground (E&G)` paradigms. The P&R paradigm consists of a neural retrieval module for shortlisting relevant tools and an LLM-based query planner that decomposes complex queries into actionable tasks, enhancing the effectiveness of tool utilization. The E&G paradigm utilizes LLMs to enrich tool descriptions based on user scenarios, bridging the gap between user queries and tool functionalities. Experiment results demonstrate that these paradigms significantly improve the recall and NDCG in tool retrieval tasks, significantly surpassing current state-of-the-art models.
- Abstract(参考訳): 外部ツールをLLM(Large Language Models)に統合する最近の進歩は、数学的推論、コードジェネレータ、スマートアシスタントなど、新たなフロンティアを開拓している。
しかし、既存の手法は、単純なワンタイム検索戦略に依存しており、関連ツールを効果的かつ正確にショートリスト化するには不十分である。
本稿では,「Plan-and-Retrieve (P&R)」「Edit-and-Ground (E&G)」といったパラダイムを取り入れた,新しいPLUTO(Planning, Learning, and Understanding for TOols)アプローチを提案する。
P&Rパラダイムは、関連するツールをショートリストするニューラル検索モジュールと、複雑なクエリを実行可能なタスクに分解し、ツール利用の有効性を高めるLLMベースのクエリプランナで構成されている。
E&GパラダイムはLLMを利用して、ユーザシナリオに基づいたツール記述を強化し、ユーザクエリとツール機能のギャップを埋める。
実験の結果、これらのパラダイムはツール検索タスクにおけるリコールとNDCGを大幅に改善し、現在の最先端モデルを大きく上回っていることがわかった。
関連論文リスト
- MetaTool: Facilitating Large Language Models to Master Tools with Meta-task Augmentation [25.360660222418183]
我々は、再利用可能なツールセットをマスターするために一般化可能な新しいツール学習手法(MetaTool)を導入する。
我々は,ツール実行のマスキング要因を予測するメタタスクを開発した。
メタタスクデータを命令チューニングプロセスに組み込むことで,提案したMetaToolモデルは,オープンソースモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2024-07-15T10:15:41Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
知識グラフ(KG)から得られた計画データを用いて,大規模言語モデル(LLM)計画能力を向上するための新しいフレームワークを提案する。
KGデータで微調整されたLLMは、計画能力を向上し、検索を含む複雑なQAタスクを処理するのがより適している。
論文 参考訳(メタデータ) (2024-06-20T13:07:38Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - COLT: Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
そこで我々は,Collaborative Learning-based Tool Retrieval approach, COLTを提案する。
COLTはユーザクエリとツール記述のセマンティックな類似性をキャプチャする。
また、ツールの協調的な情報も考慮に入れている。
論文 参考訳(メタデータ) (2024-05-25T06:41:23Z) - Look Before You Leap: Towards Decision-Aware and Generalizable
Tool-Usage for Large Language Models [28.19932548630398]
意思決定・汎用ツール・ユース・フレームワーク(DEER)を提案する。
具体的には、まず、自動生成パイプラインを介して、複数の決定ブランチを持つツール使用サンプルを構築します。
提案するDEERは, 各種データセットのベースラインよりも効果的で, 著しく優れる。
論文 参考訳(メタデータ) (2024-02-26T16:11:03Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraToolは、ツール利用におけるLarge Language Modelsの能力を改善し評価するために設計された、新しいベンチマークである。
現実の複雑さを強調し、効果的な問題解決のために正確で多段階の計画を必要とする。
UltraToolの重要な特徴は、ツールの使用前に発生する自然言語による計画の独立した評価である。
論文 参考訳(メタデータ) (2024-01-30T16:52:56Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyToolは、多種多様で長いツールドキュメントを統一的で簡潔なツール命令に変換するフレームワークである。
トークン使用量を大幅に削減し、現実のシナリオにおけるツール利用のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-01-11T15:45:11Z) - Large Language Models as Tool Makers [85.00361145117293]
我々はLLM A s Tool Makers (LATM) と呼ばれるクローズドループフレームワークを導入する。
ツール作成: 1 つのツール作成: LLM がタスクセットのためのツールを作成するツールメーカとして機能する 2 つのツール使用: 別の LLM がツールユーザとして機能し、ツールメーカが問題解決のために構築したツールを適用する。
論文 参考訳(メタデータ) (2023-05-26T17:50:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。