Shortcuts Arising from Contrast: Effective and Covert Clean-Label Attacks in Prompt-Based Learning
- URL: http://arxiv.org/abs/2404.00461v1
- Date: Sat, 30 Mar 2024 20:02:36 GMT
- Title: Shortcuts Arising from Contrast: Effective and Covert Clean-Label Attacks in Prompt-Based Learning
- Authors: Xiaopeng Xie, Ming Yan, Xiwen Zhou, Chenlong Zhao, Suli Wang, Yong Zhang, Joey Tianyi Zhou,
- Abstract summary: We propose a method named Contrastive Shortcut Injection (CSI), by leveraging activation values, integrates trigger design and data selection strategies to craft stronger shortcut features.
With extensive experiments on full-shot and few-shot text classification tasks, we empirically validate CSI's high effectiveness and high stealthiness at low poisoning rates.
- Score: 40.130762098868736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompt-based learning paradigm has demonstrated remarkable efficacy in enhancing the adaptability of pretrained language models (PLMs), particularly in few-shot scenarios. However, this learning paradigm has been shown to be vulnerable to backdoor attacks. The current clean-label attack, employing a specific prompt as a trigger, can achieve success without the need for external triggers and ensure correct labeling of poisoned samples, which is more stealthy compared to the poisoned-label attack, but on the other hand, it faces significant issues with false activations and poses greater challenges, necessitating a higher rate of poisoning. Using conventional negative data augmentation methods, we discovered that it is challenging to trade off between effectiveness and stealthiness in a clean-label setting. In addressing this issue, we are inspired by the notion that a backdoor acts as a shortcut and posit that this shortcut stems from the contrast between the trigger and the data utilized for poisoning. In this study, we propose a method named Contrastive Shortcut Injection (CSI), by leveraging activation values, integrates trigger design and data selection strategies to craft stronger shortcut features. With extensive experiments on full-shot and few-shot text classification tasks, we empirically validate CSI's high effectiveness and high stealthiness at low poisoning rates. Notably, we found that the two approaches play leading roles in full-shot and few-shot settings, respectively.
Related papers
- SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
arXiv Detail & Related papers (2024-05-19T14:50:09Z) - Rethinking Graph Backdoor Attacks: A Distribution-Preserving Perspective [33.35835060102069]
Graph Neural Networks (GNNs) have shown remarkable performance in various tasks.
Backdoor attack poisons the graph by attaching backdoor triggers and the target class label to a set of nodes in the training graph.
In this paper, we study a novel problem of unnoticeable graph backdoor attacks with in-distribution (ID) triggers.
arXiv Detail & Related papers (2024-05-17T13:09:39Z) - Pre-trained Trojan Attacks for Visual Recognition [106.13792185398863]
Pre-trained vision models (PVMs) have become a dominant component due to their exceptional performance when fine-tuned for downstream tasks.
We propose the Pre-trained Trojan attack, which embeds backdoors into a PVM, enabling attacks across various downstream vision tasks.
We highlight the challenges posed by cross-task activation and shortcut connections in successful backdoor attacks.
arXiv Detail & Related papers (2023-12-23T05:51:40Z) - Efficient Trigger Word Insertion [9.257916713112945]
Our main objective is to reduce the number of poisoned samples while still achieving a satisfactory Attack Success Rate (ASR) in text backdoor attacks.
We propose an efficient trigger word insertion strategy in terms of trigger word optimization and poisoned sample selection.
Our approach achieves an ASR of over 90% with only 10 poisoned samples in the dirty-label setting and requires merely 1.5% of the training data in the clean-label setting.
arXiv Detail & Related papers (2023-11-23T12:15:56Z) - Confidence-driven Sampling for Backdoor Attacks [49.72680157684523]
Backdoor attacks aim to surreptitiously insert malicious triggers into DNN models, granting unauthorized control during testing scenarios.
Existing methods lack robustness against defense strategies and predominantly focus on enhancing trigger stealthiness while randomly selecting poisoned samples.
We introduce a straightforward yet highly effective sampling methodology that leverages confidence scores. Specifically, it selects samples with lower confidence scores, significantly increasing the challenge for defenders in identifying and countering these attacks.
arXiv Detail & Related papers (2023-10-08T18:57:36Z) - Mitigating Backdoor Poisoning Attacks through the Lens of Spurious
Correlation [43.75579468533781]
backdoors can be implanted through crafting training instances with a specific trigger and a target label.
This paper posits that backdoor poisoning attacks exhibit emphspurious correlation between simple text features and classification labels.
Our empirical study reveals that the malicious triggers are highly correlated to their target labels.
arXiv Detail & Related papers (2023-05-19T11:18:20Z) - Prompt as Triggers for Backdoor Attack: Examining the Vulnerability in
Language Models [41.1058288041033]
We propose ProAttack, a novel and efficient method for performing clean-label backdoor attacks based on the prompt.
Our method does not require external triggers and ensures correct labeling of poisoned samples, improving the stealthy nature of the backdoor attack.
arXiv Detail & Related papers (2023-05-02T06:19:36Z) - Indiscriminate Poisoning Attacks Are Shortcuts [77.38947817228656]
We find that the perturbations of advanced poisoning attacks are almost textbflinear separable when assigned with the target labels of the corresponding samples.
We show that such synthetic perturbations are as powerful as the deliberately crafted attacks.
Our finding suggests that the emphshortcut learning problem is more serious than previously believed.
arXiv Detail & Related papers (2021-11-01T12:44:26Z) - Poisoned classifiers are not only backdoored, they are fundamentally
broken [84.67778403778442]
Under a commonly-studied backdoor poisoning attack against classification models, an attacker adds a small trigger to a subset of the training data.
It is often assumed that the poisoned classifier is vulnerable exclusively to the adversary who possesses the trigger.
In this paper, we show empirically that this view of backdoored classifiers is incorrect.
arXiv Detail & Related papers (2020-10-18T19:42:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.