Mitigating Backdoor Poisoning Attacks through the Lens of Spurious
Correlation
- URL: http://arxiv.org/abs/2305.11596v2
- Date: Fri, 20 Oct 2023 08:10:27 GMT
- Title: Mitigating Backdoor Poisoning Attacks through the Lens of Spurious
Correlation
- Authors: Xuanli He, Qiongkai Xu, Jun Wang, Benjamin Rubinstein, Trevor Cohn
- Abstract summary: backdoors can be implanted through crafting training instances with a specific trigger and a target label.
This paper posits that backdoor poisoning attacks exhibit emphspurious correlation between simple text features and classification labels.
Our empirical study reveals that the malicious triggers are highly correlated to their target labels.
- Score: 43.75579468533781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern NLP models are often trained over large untrusted datasets, raising
the potential for a malicious adversary to compromise model behaviour. For
instance, backdoors can be implanted through crafting training instances with a
specific textual trigger and a target label. This paper posits that backdoor
poisoning attacks exhibit \emph{spurious correlation} between simple text
features and classification labels, and accordingly, proposes methods for
mitigating spurious correlation as means of defence. Our empirical study
reveals that the malicious triggers are highly correlated to their target
labels; therefore such correlations are extremely distinguishable compared to
those scores of benign features, and can be used to filter out potentially
problematic instances. Compared with several existing defences, our defence
method significantly reduces attack success rates across backdoor attacks, and
in the case of insertion-based attacks, our method provides a near-perfect
defence.
Related papers
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
arXiv Detail & Related papers (2024-05-19T14:50:09Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Detecting Backdoors in Deep Text Classifiers [43.36440869257781]
We present the first robust defence mechanism that generalizes to several backdoor attacks against text classification models.
Our technique is highly accurate at defending against state-of-the-art backdoor attacks, including data poisoning and weight poisoning.
arXiv Detail & Related papers (2022-10-11T07:48:03Z) - Contributor-Aware Defenses Against Adversarial Backdoor Attacks [2.830541450812474]
adversarial backdoor attacks have demonstrated the capability to perform targeted misclassification of specific examples.
We propose a contributor-aware universal defensive framework for learning in the presence of multiple, potentially adversarial data sources.
Our empirical studies demonstrate the robustness of the proposed framework against adversarial backdoor attacks from multiple simultaneous adversaries.
arXiv Detail & Related papers (2022-05-28T20:25:34Z) - On Trace of PGD-Like Adversarial Attacks [77.75152218980605]
Adversarial attacks pose safety and security concerns for deep learning applications.
We construct Adrial Response Characteristics (ARC) features to reflect the model's gradient consistency.
Our method is intuitive, light-weighted, non-intrusive, and data-undemanding.
arXiv Detail & Related papers (2022-05-19T14:26:50Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
A backdoored model always predicts a target class in the presence of a predefined trigger pattern.
In general, adversarial training is believed to defend against backdoor attacks.
We propose a hybrid strategy which provides satisfactory robustness across different backdoor attacks.
arXiv Detail & Related papers (2022-02-22T02:24:46Z) - Excess Capacity and Backdoor Poisoning [11.383869751239166]
A backdoor data poisoning attack is an adversarial attack wherein the attacker injects several watermarked, mislabeled training examples into a training set.
We present a formal theoretical framework within which one can discuss backdoor data poisoning attacks for classification problems.
arXiv Detail & Related papers (2021-09-02T03:04:38Z) - Can We Mitigate Backdoor Attack Using Adversarial Detection Methods? [26.8404758315088]
We conduct comprehensive studies on the connections between adversarial examples and backdoor examples of Deep Neural Networks.
Our insights are based on the observation that both adversarial examples and backdoor examples have anomalies during the inference process.
We revise four existing adversarial defense methods for detecting backdoor examples.
arXiv Detail & Related papers (2020-06-26T09:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.