Privacy Preservation through Practical Machine Unlearning
- URL: http://arxiv.org/abs/2502.10635v2
- Date: Tue, 18 Feb 2025 14:16:06 GMT
- Title: Privacy Preservation through Practical Machine Unlearning
- Authors: Robert Dilworth,
- Abstract summary: This paper examines methods such as Naive Retraining and Exact Unlearning via the SISA framework.
We explore the potential of integrating unlearning principles into Positive Unlabeled (PU) Learning to address challenges posed by partially labeled datasets.
- Score: 0.0
- License:
- Abstract: Machine Learning models thrive on vast datasets, continuously adapting to provide accurate predictions and recommendations. However, in an era dominated by privacy concerns, Machine Unlearning emerges as a transformative approach, enabling the selective removal of data from trained models. This paper examines methods such as Naive Retraining and Exact Unlearning via the SISA framework, evaluating their Computational Costs, Consistency, and feasibility using the $\texttt{HSpam14}$ dataset. We explore the potential of integrating unlearning principles into Positive Unlabeled (PU) Learning to address challenges posed by partially labeled datasets. Our findings highlight the promise of unlearning frameworks like $\textit{DaRE}$ for ensuring privacy compliance while maintaining model performance, albeit with significant computational trade-offs. This study underscores the importance of Machine Unlearning in achieving ethical AI and fostering trust in data-driven systems.
Related papers
- From Machine Learning to Machine Unlearning: Complying with GDPR's Right to be Forgotten while Maintaining Business Value of Predictive Models [9.380866972744633]
This work develops a holistic machine learning-to-unlearning framework, called Ensemble-based iTerative Information Distillation (ETID)
ETID incorporates a new ensemble learning method to build an accurate predictive model that can facilitate handling data erasure requests.
We also introduce an innovative distillation-based unlearning method tailored to the constructed ensemble model to enable efficient and effective data erasure.
arXiv Detail & Related papers (2024-11-26T05:42:46Z) - RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Large language models trained on web-scale corpora can memorize undesirable datapoints.
Many machine unlearning algorithms have been proposed that aim to erase' these datapoints.
We propose the RESTOR framework for machine unlearning, which evaluates the ability of unlearning algorithms to perform targeted data erasure.
arXiv Detail & Related papers (2024-10-31T20:54:35Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
We present a novel unlearning mechanism designed to remove the impact of specific data samples from a neural network.
In achieving this goal, we crafted a novel loss function tailored to eliminate privacy-sensitive information from weights and activation values of the target model.
Our results showcase the superior performance of our approach in terms of unlearning efficacy and latency as well as the fidelity of the primary task.
arXiv Detail & Related papers (2024-07-01T00:20:26Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
arXiv Detail & Related papers (2024-04-14T05:02:00Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Self-consistent Validation for Machine Learning Electronic Structure [81.54661501506185]
Method integrates machine learning with self-consistent field methods to achieve both low validation cost and interpret-ability.
This, in turn, enables exploration of the model's ability with active learning and instills confidence in its integration into real-world studies.
arXiv Detail & Related papers (2024-02-15T18:41:35Z) - Dataset Condensation Driven Machine Unlearning [0.0]
Current trend in data regulation requirements and privacy-preserving machine learning has emphasized the importance of machine unlearning.
We propose new dataset condensation techniques and an innovative unlearning scheme that strikes a balance between machine unlearning privacy, utility, and efficiency.
We present a novel and effective approach to instrumenting machine unlearning and propose its application in defending against membership inference and model inversion attacks.
arXiv Detail & Related papers (2024-01-31T21:48:25Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.