論文の概要: Creating synthetic energy meter data using conditional diffusion and building metadata
- arxiv url: http://arxiv.org/abs/2404.00525v1
- Date: Sun, 31 Mar 2024 01:58:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 03:10:31.597726
- Title: Creating synthetic energy meter data using conditional diffusion and building metadata
- Title(参考訳): 条件拡散と構築メタデータを用いた合成エネルギーメーターデータの作成
- Authors: Chun Fu, Hussain Kazmi, Matias Quintana, Clayton Miller,
- Abstract要約: 本研究では,関連メタデータを用いて高品質な合成エネルギーデータを生成する条件拡散モデルを提案する。
様々な建物や国から1,828個のパワーメーターからなるデータセットを用いて、従来の手法と比較する。
その結果,FID(Frechet Inception Distance)スコアは36%,KL(Kulback-Leibler divergence)は13%低下した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Advances in machine learning and increased computational power have driven progress in energy-related research. However, limited access to private energy data from buildings hinders traditional regression models relying on historical data. While generative models offer a solution, previous studies have primarily focused on short-term generation periods (e.g., daily profiles) and a limited number of meters. Thus, the study proposes a conditional diffusion model for generating high-quality synthetic energy data using relevant metadata. Using a dataset comprising 1,828 power meters from various buildings and countries, this model is compared with traditional methods like Conditional Generative Adversarial Networks (CGAN) and Conditional Variational Auto-Encoders (CVAE). It explicitly handles long-term annual consumption profiles, harnessing metadata such as location, weather, building, and meter type to produce coherent synthetic data that closely resembles real-world energy consumption patterns. The results demonstrate the proposed diffusion model's superior performance, with a 36% reduction in Frechet Inception Distance (FID) score and a 13% decrease in Kullback-Leibler divergence (KL divergence) compared to the following best method. The proposed method successfully generates high-quality energy data through metadata, and its code will be open-sourced, establishing a foundation for a broader array of energy data generation models in the future.
- Abstract(参考訳): 機械学習の進歩と計算能力の増大は、エネルギー関連研究の進展を促している。
しかし、建物からのプライベートエネルギーデータへのアクセスは、歴史的データに依存する従来の回帰モデルを妨げる。
生成モデルは解決策を提供するが、以前の研究では主に短期世代(例えば、日々のプロファイル)と限られた数メートルに焦点が当てられていた。
そこで本研究では,関連メタデータを用いて高品質な合成エネルギーデータを生成する条件拡散モデルを提案する。
様々な建物や国から1,828個のパワーメータからなるデータセットを用いて、このモデルを、条件生成適応ネットワーク(CGAN)や条件変動自動エンコーダ(CVAE)といった従来の手法と比較する。
長期の消費プロファイルを明示的に扱い、位置、天気、建築、メートルタイプといったメタデータを利用して、実世界のエネルギー消費パターンによく似た一貫性のある合成データを生成する。
その結果,拡散モデルの優れた性能を示し,Frechet Inception Distance (FID) スコアは36%,Kullback-Leibler divergence (KL divergence) は13%低下した。
提案手法はメタデータによる高品質なエネルギーデータの生成に成功し,そのコードはオープンソース化され,将来,より広範なエネルギーデータ生成モデルの基礎が確立される。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - From RNNs to Foundation Models: An Empirical Study on Commercial Building Energy Consumption [3.355907772736553]
商業ビルの短期エネルギー消費予測はスマートグリッドの運用に不可欠である。
スマートメーターとディープラーニングモデルは、複数の建物からの過去のデータを使用した予測を可能にするが、多様な建物からのデータの異質性は、モデルの性能を低下させる可能性がある。
我々は、米国の商業ビルのエネルギー消費データを提供するComStockデータセットを用いてこの問題に対処する。
論文 参考訳(メタデータ) (2024-11-21T18:54:43Z) - Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
エネルギーベース拡散言語モデル(Energy-based Diffusion Language Model, EDLM)は、拡散ステップごとに全シーケンスレベルで動作するエネルギーベースモデルである。
我々のフレームワークは、既存の拡散モデルよりも1.3$times$のサンプリングスピードアップを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:25:56Z) - EnergyDiff: Universal Time-Series Energy Data Generation using Diffusion Models [2.677325229270716]
高解像度時系列データはエネルギーシステムの運用と計画に不可欠である。
データ収集コストとプライバシー上の懸念のため、そのようなデータはダウンストリームタスクでは利用できないか、あるいは不十分であることが多い。
本稿では,エネルギー時系列データのための汎用データ生成フレームワークであるEnergyDiffを提案する。
論文 参考訳(メタデータ) (2024-07-18T14:10:50Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Enhancing Indoor Temperature Forecasting through Synthetic Data in Low-Data Environments [42.8983261737774]
合成データ生成のためのSoTA AI を用いたデータ拡張手法の有効性について検討する。
そこで本研究では,実データと合成データの融合戦略を探求し,予測モデルの改善を図る。
論文 参考訳(メタデータ) (2024-06-07T12:36:31Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Grid Frequency Forecasting in University Campuses using Convolutional
LSTM [0.0]
本稿では,畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)を用いて,グリッド周波数の堅牢な時間予測モデルを確立する。
個々のConvLSTMモデルは、各キャンパスビルの電力消費データに基づいて訓練され、歴史的傾向に基づいてグリッド周波数を予測する。
アンサンブルモデル(英: Ensemble Model)は、建物固有のモデルから洞察を収集し、キャンパス全体の総合的な予測を提供する。
論文 参考訳(メタデータ) (2023-10-24T13:53:51Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - A Comparative Study on Energy Consumption Models for Drones [4.660172505713055]
我々は、その物理的挙動から派生したドローンの5つの最も人気のあるエネルギー消費モデルをベンチマークする。
本稿では,Long Short-Term Memory (LSTM) に基づくディープラーニングアーキテクチャを用いた新しいデータ駆動型エネルギーモデルを提案する。
実験の結果,LSTMに基づくアプローチは,研究中のデータセットに対して,他の数学的モデルよりも容易に優れていることがわかった。
論文 参考訳(メタデータ) (2022-05-30T23:05:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。