論文の概要: GAN with Skip Patch Discriminator for Biological Electron Microscopy Image Generation
- arxiv url: http://arxiv.org/abs/2404.00558v1
- Date: Sun, 31 Mar 2024 04:39:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 03:00:38.378326
- Title: GAN with Skip Patch Discriminator for Biological Electron Microscopy Image Generation
- Title(参考訳): 生体電子顕微鏡画像生成のためのスキップパッチ判別器付きGAN
- Authors: Nishith Ranjon Roy, Nailah Rawnaq, Tulin Kaman,
- Abstract要約: 現実的な電子顕微鏡(EM)画像の生成は、その複雑なグローバル構造と局所構造のために難しい問題となっている。
本研究では,複数のパッチサイズをスキップパッチを用いてアクセスし,現実的なEM画像を生成する条件付きジェネレーティブ・アドバイサル・ネットワーク(GAN)における識別器の新しいアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating realistic electron microscopy (EM) images has been a challenging problem due to their complex global and local structures. Isola et al. proposed pix2pix, a conditional Generative Adversarial Network (GAN), for the general purpose of image-to-image translation; which fails to generate realistic EM images. We propose a new architecture for the discriminator in the GAN providing access to multiple patch sizes using skip patches and generating realistic EM images.
- Abstract(参考訳): 現実的な電子顕微鏡(EM)画像の生成は、その複雑なグローバル構造と局所構造のために難しい問題となっている。
Isola et al proposed pix2pix, a conditional Generative Adversarial Network (GAN) for the general purpose of image-to-image translation。
本稿では,GANにおける識別器のための新しいアーキテクチャを提案し,スキップパッチを用いて複数のパッチサイズにアクセスし,現実的なEM画像を生成する。
関連論文リスト
- Edify Image: High-Quality Image Generation with Pixel Space Laplacian Diffusion Models [73.34674816016211]
Edify Imageは、ピクセル完全精度でフォトリアリスティックな画像コンテンツを生成することができる拡散モデルのファミリーである。
Edify Imageはテキスト・ツー・イメージ合成、4Kアップサンプリング、コントロールネット、360 HDRパノラマ生成、画像カスタマイズのための微調整など幅広いアプリケーションをサポートしている。
論文 参考訳(メタデータ) (2024-11-11T16:58:31Z) - I2I-Galip: Unsupervised Medical Image Translation Using Generative Adversarial CLIP [30.506544165999564]
ペアの例が存在しないため、画像から画像への翻訳は難しい作業である。
我々はイメージ・ツー・イメージ・ジェネレーティブ・アドバイザリアル・CLIP (I2I-Galip) という新しい画像・画像変換フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-19T01:44:50Z) - BioGAN: An unpaired GAN-based image to image translation model for
microbiological images [1.6427658855248812]
微生物画像のための画像翻訳モデルとして,未ペアのGAN(Generative Adversarial Network)画像を開発した。
本稿では,実験室で撮影された画像の高レベルな特徴をフィールド画像に変換するために,適応的・知覚的損失を利用したGANモデルBioGANの設計を提案する。
論文 参考訳(メタデータ) (2023-06-09T19:30:49Z) - Guided Image-to-Image Translation by Discriminator-Generator
Communication [71.86347329356244]
Image-to-image (I2I) 翻訳の目標は、ソースドメインからターゲットドメインに画像を転送することである。
本研究の主な分野は,GAN(Generative Adversarial Network)に基づくI2I翻訳の定式化である。
論文 参考訳(メタデータ) (2023-03-07T02:29:36Z) - Dual Pyramid Generative Adversarial Networks for Semantic Image
Synthesis [94.76988562653845]
セマンティック画像合成の目標は、セマンティックラベルマップからフォトリアリスティック画像を生成することである。
しかし、現在の最先端のアプローチは、さまざまなスケールで画像で現実的なオブジェクトを生成するのに依然として苦労している。
本研究では,空間適応型正規化ブロックの条件付けを各スケールで同時に学習するDual Pyramid Generative Adversarial Network (DP-GAN)を提案する。
論文 参考訳(メタデータ) (2022-10-08T18:45:44Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
本稿では,SAR画像復号化のためのトランスフォーマーネットワークを提案する。
提案する非特定ネットワークは、トランスフォーマーベースのエンコーダにより、異なる画像領域間のグローバルな依存関係を学習することができる。
実験により,提案手法は従来型および畳み込み型ニューラルネットワークに基づく解法よりも大幅に改善されていることが示された。
論文 参考訳(メタデータ) (2022-01-23T20:09:01Z) - MRI to PET Cross-Modality Translation using Globally and Locally Aware
GAN (GLA-GAN) for Multi-Modal Diagnosis of Alzheimer's Disease [1.7499351967216341]
現実像を合成できるGAN(Generative Adversarial Network)は、標準的なデータ拡張手法の代替として大きな可能性を秘めている。
本稿では,グローバルな構造的整合性と局所的細部への忠実さを両立させるマルチパスアーキテクチャにより,グローバルかつ局所的に認識された画像間変換GAN(GLA-GAN)を提案する。
論文 参考訳(メタデータ) (2021-08-04T16:38:33Z) - MI^2GAN: Generative Adversarial Network for Medical Image Domain
Adaptation using Mutual Information Constraint [47.07869311690419]
本稿では,ドメイン間I2I翻訳中に画像コンテンツを保持する新しいGANを提案する。
特に、ソース画像と翻訳画像の両方のドメイン情報からコンテンツ特徴を分離する。
提案したMI$2$GANは,大腸内視鏡画像を用いたポリープセグメンテーションと,眼底画像における光ディスクとカップのセグメンテーションの2つの課題について評価した。
論文 参考訳(メタデータ) (2020-07-22T03:19:54Z) - A U-Net Based Discriminator for Generative Adversarial Networks [86.67102929147592]
GAN(Generative Adversarial Network)のための代替U-Netベースの識別器アーキテクチャを提案する。
提案アーキテクチャにより,合成画像のグローバルコヒーレンスを維持しつつ,画素単位の詳細なフィードバックを生成元に提供することができる。
斬新な判別器は、標準分布と画像品質の指標の観点から、最先端の技術を向上する。
論文 参考訳(メタデータ) (2020-02-28T11:16:54Z) - Optimizing Generative Adversarial Networks for Image Super Resolution
via Latent Space Regularization [4.529132742139768]
GAN(Generative Adversarial Networks)は、多様体内の実画像の分布を学習し、実際のように見えるサンプルを生成する。
本稿では,これらの問題を教師付きGANに対して緩和する方法を探究する。
論文 参考訳(メタデータ) (2020-01-22T16:27:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。