Multi-Spectral Image Synthesis for Crop/Weed Segmentation in Precision
Farming
- URL: http://arxiv.org/abs/2009.05750v2
- Date: Mon, 6 Sep 2021 12:33:43 GMT
- Title: Multi-Spectral Image Synthesis for Crop/Weed Segmentation in Precision
Farming
- Authors: Mulham Fawakherji, Ciro Potena, Alberto Pretto, Domenico D. Bloisi,
Daniele Nardi
- Abstract summary: We propose an alternative solution with respect to the common data augmentation methods, applying it to the problem of crop/weed segmentation in precision farming.
We create semi-artificial samples by replacing the most relevant object classes (i.e., crop and weeds) with their synthesized counterparts.
In addition to RGB data, we take into account also near-infrared (NIR) information, generating four channel multi-spectral synthetic images.
- Score: 3.4788711710826083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An effective perception system is a fundamental component for farming robots,
as it enables them to properly perceive the surrounding environment and to
carry out targeted operations. The most recent methods make use of
state-of-the-art machine learning techniques to learn a valid model for the
target task. However, those techniques need a large amount of labeled data for
training. A recent approach to deal with this issue is data augmentation
through Generative Adversarial Networks (GANs), where entire synthetic scenes
are added to the training data, thus enlarging and diversifying their
informative content. In this work, we propose an alternative solution with
respect to the common data augmentation methods, applying it to the fundamental
problem of crop/weed segmentation in precision farming. Starting from real
images, we create semi-artificial samples by replacing the most relevant object
classes (i.e., crop and weeds) with their synthesized counterparts. To do that,
we employ a conditional GAN (cGAN), where the generative model is trained by
conditioning the shape of the generated object. Moreover, in addition to RGB
data, we take into account also near-infrared (NIR) information, generating
four channel multi-spectral synthetic images. Quantitative experiments, carried
out on three publicly available datasets, show that (i) our model is capable of
generating realistic multi-spectral images of plants and (ii) the usage of such
synthetic images in the training process improves the segmentation performance
of state-of-the-art semantic segmentation convolutional networks.
Related papers
- Analysis of Classifier Training on Synthetic Data for Cross-Domain Datasets [4.696575161583618]
This study focuses on camera-based traffic sign recognition applications for advanced driver assistance systems and autonomous driving.
The proposed augmentation pipeline of synthetic datasets includes novel augmentation processes such as structured shadows and gaussian specular highlights.
Experiments showed that a synthetic image-based approach outperforms in most cases real image-based training when applied to cross-domain test datasets.
arXiv Detail & Related papers (2024-10-30T07:11:41Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - A survey of synthetic data augmentation methods in computer vision [0.0]
This paper presents an extensive review of synthetic data augmentation techniques.
We focus on the important data generation and augmentation techniques, general scope of application and specific use-cases.
We provide a summary of common synthetic datasets for training computer vision models.
arXiv Detail & Related papers (2024-03-15T07:34:08Z) - Improving the Effectiveness of Deep Generative Data [5.856292656853396]
Training a model on purely synthetic images for downstream image processing tasks results in an undesired performance drop compared to training on real data.
We propose a new taxonomy to describe factors contributing to this commonly observed phenomenon and investigate it on the popular CIFAR-10 dataset.
Our method outperforms baselines on downstream classification tasks both in case of training on synthetic only (Synthetic-to-Real) and training on a mix of real and synthetic data.
arXiv Detail & Related papers (2023-11-07T12:57:58Z) - Generalizing Surgical Instruments Segmentation to Unseen Domains with
One-to-Many Synthesis [18.830738606514736]
Deep learning methods are frequently hindered from deploying to real-world surgical applications.
Data collection, annotation, and domain shift in-between sites and patients are the most common obstacles.
We mitigate data-related issues by efficiently leveraging minimal source images to generate synthetic surgical instrument segmentation datasets.
arXiv Detail & Related papers (2023-06-28T15:06:44Z) - Generalizing Dataset Distillation via Deep Generative Prior [75.9031209877651]
We propose to distill an entire dataset's knowledge into a few synthetic images.
The idea is to synthesize a small number of synthetic data points that, when given to a learning algorithm as training data, result in a model approximating one trained on the original data.
We present a new optimization algorithm that distills a large number of images into a few intermediate feature vectors in the generative model's latent space.
arXiv Detail & Related papers (2023-05-02T17:59:31Z) - Inside Out: Transforming Images of Lab-Grown Plants for Machine Learning
Applications in Agriculture [0.0]
We employ a contrastive unpaired translation (CUT) generative adversarial network (GAN) to translate indoor plant images to appear as field images.
While we train our network to translate an image containing only a single plant, we show that our method is easily extendable to produce multiple-plant field images.
We also use our synthetic multi-plant images to train several YoloV5 nano object detection models to perform the task of plant detection.
arXiv Detail & Related papers (2022-11-05T20:51:45Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.