Degradation Oriented and Regularized Network for Blind Depth Super-Resolution
- URL: http://arxiv.org/abs/2410.11666v3
- Date: Wed, 06 Nov 2024 12:00:44 GMT
- Title: Degradation Oriented and Regularized Network for Blind Depth Super-Resolution
- Authors: Zhengxue Wang, Zhiqiang Yan, Jinshan Pan, Guangwei Gao, Kai Zhang, Jian Yang,
- Abstract summary: In real-world scenarios, captured depth data often suffer from unconventional and unknown degradation due to sensor limitations and complex imaging environments.
We propose the Degradation Oriented and Regularized Network (DORNet), a novel framework designed to adaptively address unknown degradation in real-world scenes.
Our approach begins with the development of a self-supervised degradation learning strategy, which models the degradation representations of low-resolution depth data.
To facilitate effective RGB-D fusion, we further introduce a degradation-oriented feature transformation module that selectively propagates RGB content into the depth data based on the learned degradation priors.
- Score: 48.744290794713905
- License:
- Abstract: Recent RGB-guided depth super-resolution methods have achieved impressive performance under the assumption of fixed and known degradation (e.g., bicubic downsampling). However, in real-world scenarios, captured depth data often suffer from unconventional and unknown degradation due to sensor limitations and complex imaging environments (e.g., low reflective surfaces, varying illumination). Consequently, the performance of these methods significantly declines when real-world degradation deviate from their assumptions. In this paper, we propose the Degradation Oriented and Regularized Network (DORNet), a novel framework designed to adaptively address unknown degradation in real-world scenes through implicit degradation representations. Our approach begins with the development of a self-supervised degradation learning strategy, which models the degradation representations of low-resolution depth data using routing selection-based degradation regularization. To facilitate effective RGB-D fusion, we further introduce a degradation-oriented feature transformation module that selectively propagates RGB content into the depth data based on the learned degradation priors. Extensive experimental results on both real and synthetic datasets demonstrate the superiority of our DORNet in handling unknown degradation, outperforming existing methods. The code is available at https://github.com/yanzq95/DORNet.
Related papers
- Content-decoupled Contrastive Learning-based Implicit Degradation Modeling for Blind Image Super-Resolution [33.16889233975723]
Implicit degradation modeling-based blind super-resolution (SR) has attracted more increasing attention in the community.
We propose a new Content-decoupled Contrastive Learning-based blind image super-resolution (CdCL) framework.
arXiv Detail & Related papers (2024-08-10T04:51:43Z) - Suppressing Uncertainties in Degradation Estimation for Blind Super-Resolution [31.89605287039615]
The problem of blind image super-resolution aims to recover high-resolution (HR) images from low-resolution (LR) images with unknown degradation modes.
Most existing methods model the image degradation process using blur kernels.
We propose an textbfUncertainty-based degradation representation for blind textbfSuper-textbfResolution framework.
arXiv Detail & Related papers (2024-06-24T08:58:43Z) - Towards Realistic Data Generation for Real-World Super-Resolution [58.88039242455039]
RealDGen is an unsupervised learning data generation framework designed for real-world super-resolution.
We develop content and degradation extraction strategies, which are integrated into a novel content-degradation decoupled diffusion model.
Experiments demonstrate that RealDGen excels in generating large-scale, high-quality paired data that mirrors real-world degradations.
arXiv Detail & Related papers (2024-06-11T13:34:57Z) - Incorporating Degradation Estimation in Light Field Spatial Super-Resolution [54.603510192725786]
We present LF-DEST, an effective blind Light Field SR method that incorporates explicit Degradation Estimation to handle various degradation types.
We conduct extensive experiments on benchmark datasets, demonstrating that LF-DEST achieves superior performance across a variety of degradation scenarios in light field SR.
arXiv Detail & Related papers (2024-05-11T13:14:43Z) - DeeDSR: Towards Real-World Image Super-Resolution via Degradation-Aware Stable Diffusion [27.52552274944687]
We introduce a novel two-stage, degradation-aware framework that enhances the diffusion model's ability to recognize content and degradation in low-resolution images.
In the first stage, we employ unsupervised contrastive learning to obtain representations of image degradations.
In the second stage, we integrate a degradation-aware module into a simplified ControlNet, enabling flexible adaptation to various degradations.
arXiv Detail & Related papers (2024-03-31T12:07:04Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
We propose a novel self-supervised framework to detect objects in degraded low resolution images.
Our methods has achieved superior performance compared with existing methods when facing variant degradation situations.
arXiv Detail & Related papers (2022-08-05T09:36:13Z) - Meta-Learning based Degradation Representation for Blind
Super-Resolution [54.93926549648434]
We propose a Meta-Learning based Region Degradation Aware SR Network (MRDA)
We use the MRDA to rapidly adapt to the specific complex degradation after several iterations and extract implicit degradation information.
A teacher network MRDA$_T$ is designed to further utilize the degradation information extracted by MLN for SR.
arXiv Detail & Related papers (2022-07-28T09:03:00Z) - Learning Generalizable Latent Representations for Novel Degradations in
Super Resolution [29.706191592443027]
We propose to learn a latent representation space for degradations, which can be generalized from handcrafted (base) degradations to novel degradations.
The obtained representations for a novel degradation in this latent space are then leveraged to generate degraded images consistent with the novel degradation.
We conduct extensive experiments on both synthetic and real-world datasets to validate the effectiveness and advantages of our method for blind super-resolution with novel degradations.
arXiv Detail & Related papers (2022-07-25T16:22:30Z) - Unsupervised Degradation Representation Learning for Blind
Super-Resolution [27.788488575616032]
CNN-based super-resolution (SR) methods suffer a severe performance drop when the real degradation is different from their assumption.
We propose an unsupervised degradation representation learning scheme for blind SR without explicit degradation estimation.
Our network achieves state-of-the-art performance for the blind SR task.
arXiv Detail & Related papers (2021-04-01T11:57:42Z) - Real-world Person Re-Identification via Degradation Invariance Learning [111.86722193694462]
Person re-identification (Re-ID) in real-world scenarios usually suffers from various degradation factors, e.g., low-resolution, weak illumination, blurring and adverse weather.
We propose a degradation invariance learning framework for real-world person Re-ID.
By introducing a self-supervised disentangled representation learning strategy, our method is able to simultaneously extract identity-related robust features.
arXiv Detail & Related papers (2020-04-10T07:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.