論文の概要: LLMTreeRec: Unleashing the Power of Large Language Models for Cold-Start Recommendations
- arxiv url: http://arxiv.org/abs/2404.00702v3
- Date: Tue, 24 Dec 2024 02:48:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:51:26.047939
- Title: LLMTreeRec: Unleashing the Power of Large Language Models for Cold-Start Recommendations
- Title(参考訳): LLMTreeRec: コールドスタートレコメンデーションのための大規模言語モデルのパワーを開放する
- Authors: Wenlin Zhang, Chuhan Wu, Xiangyang Li, Yuhao Wang, Kuicai Dong, Yichao Wang, Xinyi Dai, Xiangyu Zhao, Huifeng Guo, Ruiming Tang,
- Abstract要約: 大規模言語モデル(LLM)は、言語分析タスクとしてレコメンデーションタスクをモデル化し、その膨大なオープンワールド知識に基づいてゼロショット結果を提供する。
しかし、アイテムコーパスの大規模化は、LLMに挑戦し、実際のレコメンデーションシステムにデプロイすることが不可能な、相当量のトークン消費につながる。
LLMレコメンデーションフレームワークLLMTreeRecを導入し、全ての項目をアイテムツリーに構造化し、LLMのアイテム検索の効率を向上させる。
- 参考スコア(独自算出の注目度): 67.57808826577678
- License:
- Abstract: The lack of training data gives rise to the system cold-start problem in recommendation systems, making them struggle to provide effective recommendations. To address this problem, Large Language Models (LLMs) can model recommendation tasks as language analysis tasks and provide zero-shot results based on their vast open-world knowledge. However, the large scale of the item corpus poses a challenge to LLMs, leading to substantial token consumption that makes it impractical to deploy in real-world recommendation systems. To tackle this challenge, we introduce a tree-based LLM recommendation framework LLMTreeRec, which structures all items into an item tree to improve the efficiency of LLM's item retrieval. LLMTreeRec achieves state-of-the-art performance under the system cold-start setting in two widely used datasets, which is even competitive with conventional deep recommendation systems that use substantial training data. Furthermore, LLMTreeRec outperforms the baseline model in A/B testing on Huawei industrial systems. Consequently, LLMTreeRec demonstrates its effectiveness as an industry-friendly solution that has been successfully deployed online. Our code is available at: https://github.com/Applied-Machine-Learning-Lab/LLMTreeRec.
- Abstract(参考訳): トレーニングデータの欠如は、レコメンデーションシステムにおけるコールドスタートの問題を引き起こし、効果的なレコメンデーションの提供に苦労する。
この問題に対処するために、Large Language Models (LLM) は言語分析タスクとしてレコメンデーションタスクをモデル化し、その膨大なオープンワールド知識に基づいてゼロショット結果を提供する。
しかし、アイテムコーパスの大規模化はLLMに挑戦し、実際のレコメンデーションシステムにデプロイすることが不可能なトークン消費に繋がる。
この課題に対処するために,全ての項目をアイテムツリーに構造化し,LLMの項目検索の効率化を図る,木ベースのLLMレコメンデーションフレームワークLLMTreeRecを導入する。
LLMTreeRecは、2つの広く使われているデータセットにおいて、システムコールドスタート設定の下で最先端のパフォーマンスを達成する。
さらに、LLMTreeRecはHuaweiの産業システムにおけるA/Bテストのベースラインモデルよりも優れている。
その結果,LLMTreeRecは,オンライン展開に成功している業界フレンドリーなソリューションとしての有効性を示した。
私たちのコードは、https://github.com/Applied-Machine-Learning-Lab/LLMTreeRecで利用可能です。
関連論文リスト
- HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling [21.495443162191332]
大規模言語モデル(LLM)は様々な分野で顕著な成功を収めており、いくつかの研究がレコメンデーションシステムにおいてその可能性を探求している。
逐次レコメンデーションシステムを強化するために,新しい階層型大規模言語モデル (HLLM) アーキテクチャを提案する。
HLLMは,項目特徴抽出とユーザ関心モデリングの両方に 7B パラメータを利用する構成で,優れたスケーラビリティを実現している。
論文 参考訳(メタデータ) (2024-09-19T13:03:07Z) - Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
本稿では,大規模言語モデル(LLM)を用いて,効率的な特徴生成ルールを同定するフレームワークを提案する。
我々は、自然言語で容易に表現できるため、この推論情報を伝達するために決定木を使用します。
OCTreeは様々なベンチマークで様々な予測モデルの性能を継続的に向上させる。
論文 参考訳(メタデータ) (2024-06-12T08:31:34Z) - Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System [19.8986219047121]
協調フィルタリング推薦システム (CF-RecSys) は, ソーシャルメディアやeコマースプラットフォーム上でのユーザエクスペリエンス向上に成功している。
近年の戦略は、事前訓練されたモダリティエンコーダと大規模言語モデルに基づくユーザ/イテムのモダリティ情報の活用に重点を置いている。
コールドシナリオだけでなく、ウォームシナリオにおいても優れたA-LLMRecと呼ばれる全周LCMベースのレコメンダシステムを提案する。
論文 参考訳(メタデータ) (2024-04-17T13:03:07Z) - Towards Efficient and Effective Unlearning of Large Language Models for Recommendation [46.599206847535676]
我々は, LLMunderlineRec に対する最初のアンダーライン効率とアンダーライン効果のアンダーラインアンラーニング法である textbfE2URec を提案する。
E2URecは、いくつかのLoRAパラメータだけを更新することで、未学習の効率を向上し、教師と学生のフレームワークを利用することで、未学習の効率を向上させる。
論文 参考訳(メタデータ) (2024-03-06T08:31:35Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z) - GenRec: Large Language Model for Generative Recommendation [41.22833600362077]
本稿では,テキストデータに基づく大規模言語モデル(LLM)を用いたレコメンデーションシステムに対する革新的なアプローチを提案する。
GenRecはLLMの理解機能を使ってコンテキストを解釈し、ユーザの好みを学習し、関連するレコメンデーションを生成する。
本研究は,レコメンデーションシステムの領域に革命をもたらす上で,LLMに基づくジェネレーティブレコメンデーションの可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-07-02T02:37:07Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - PALR: Personalization Aware LLMs for Recommendation [7.407353565043918]
PALRは、ユーザ履歴の振る舞い(クリック、購入、評価など)と大きな言語モデル(LLM)を組み合わせることで、ユーザの好むアイテムを生成することを目的としている。
我々のソリューションは、様々なシーケンシャルなレコメンデーションタスクにおいて最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2023-05-12T17:21:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。