論文の概要: Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System
- arxiv url: http://arxiv.org/abs/2404.11343v2
- Date: Sat, 1 Jun 2024 07:08:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 15:18:10.876266
- Title: Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System
- Title(参考訳): 協調フィルタリングに適合する大規模言語モデル: 効率的なLLMベースのレコメンダシステム
- Authors: Sein Kim, Hongseok Kang, Seungyoon Choi, Donghyun Kim, Minchul Yang, Chanyoung Park,
- Abstract要約: 協調フィルタリング推薦システム (CF-RecSys) は, ソーシャルメディアやeコマースプラットフォーム上でのユーザエクスペリエンス向上に成功している。
近年の戦略は、事前訓練されたモダリティエンコーダと大規模言語モデルに基づくユーザ/イテムのモダリティ情報の活用に重点を置いている。
コールドシナリオだけでなく、ウォームシナリオにおいても優れたA-LLMRecと呼ばれる全周LCMベースのレコメンダシステムを提案する。
- 参考スコア(独自算出の注目度): 19.8986219047121
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative filtering recommender systems (CF-RecSys) have shown successive results in enhancing the user experience on social media and e-commerce platforms. However, as CF-RecSys struggles under cold scenarios with sparse user-item interactions, recent strategies have focused on leveraging modality information of user/items (e.g., text or images) based on pre-trained modality encoders and Large Language Models (LLMs). Despite their effectiveness under cold scenarios, we observe that they underperform simple traditional collaborative filtering models under warm scenarios due to the lack of collaborative knowledge. In this work, we propose an efficient All-round LLM-based Recommender system, called A-LLMRec, that excels not only in the cold scenario but also in the warm scenario. Our main idea is to enable an LLM to directly leverage the collaborative knowledge contained in a pre-trained state-of-the-art CF-RecSys so that the emergent ability of the LLM as well as the high-quality user/item embeddings that are already trained by the state-of-the-art CF-RecSys can be jointly exploited. This approach yields two advantages: (1) model-agnostic, allowing for integration with various existing CF-RecSys, and (2) efficiency, eliminating the extensive fine-tuning typically required for LLM-based recommenders. Our extensive experiments on various real-world datasets demonstrate the superiority of A-LLMRec in various scenarios, including cold/warm, few-shot, cold user, and cross-domain scenarios. Beyond the recommendation task, we also show the potential of A-LLMRec in generating natural language outputs based on the understanding of the collaborative knowledge by performing a favorite genre prediction task. Our code is available at https://github.com/ghdtjr/A-LLMRec .
- Abstract(参考訳): 協調フィルタリング推薦システム (CF-RecSys) は, ソーシャルメディアやeコマースプラットフォーム上でのユーザエクスペリエンス向上に成功している。
しかし, CF-RecSysは, 疎密なユーザとイテムの相互作用を伴うコールドシナリオで苦労しているため, 事前学習したモダリティエンコーダとLarge Language Models(LLMs)に基づくユーザ/イテム(例えばテキストや画像)のモダリティ情報の活用に重点を置いている。
寒冷なシナリオでは有効であるが, 協調的な知識の欠如により, 温暖なシナリオ下では, 単純な協調フィルタリングモデルが不十分であることがわかった。
本研究では, コールドシナリオだけでなく, ウォームシナリオにおいても優れる, A-LLMRec と呼ばれる全周 LLM ベースの効率的なレコメンダシステムを提案する。
我々の基本的な考え方は、LLMが事前訓練されたCF-RecSysに含まれる協調的な知識を直接活用することで、LLMの創発的能力と、すでに最先端のCF-RecSysによって訓練されている高品質なユーザ/イテム埋め込みを共同で活用できるようにすることである。
このアプローチは、(1)モデルに依存しない、既存のCF-RecSysとの統合を可能にする、(2)効率の2つの利点をもたらす。
さまざまな実世界のデータセットに関する広範な実験は、コールド/ウォーム、少数ショット、コールドユーザー、クロスドメインシナリオなど、さまざまなシナリオにおいてA-LLMRecの優位性を実証している。
推薦タスクの他に、お気に入りのジャンル予測タスクを実行することで協調的な知識の理解に基づいて、自然言語出力を生成するA-LLMRecの可能性を示す。
私たちのコードはhttps://github.com/ghdtjr/A-LLMRecで利用可能です。
関連論文リスト
- LLMBox: A Comprehensive Library for Large Language Models [109.15654830320553]
本稿では,大規模言語モデル (LLM) の開発, 使用, 評価を容易にするために, 包括的で統一されたライブラリ LLMBox を提案する。
このライブラリには,(1)多様なトレーニング戦略の柔軟な実装を支援する統一データインターフェース,(2)広範囲なタスクやデータセット,モデルをカバーする包括的な評価,(3)ユーザフレンドリさや効率性など,より実践的な考慮,という3つのメリットがある。
論文 参考訳(メタデータ) (2024-07-08T02:39:33Z) - SLMRec: Empowering Small Language Models for Sequential Recommendation [25.920216777752]
シーケンシャルレコメンデーションタスクでは、ユーザが対話しそうな次の項目を予測する。
最近の研究は、LCMがシーケンシャルレコメンデーションシステムに与える影響を実証している。
LLM の巨大なサイズのため、現実のプラットフォームに LLM ベースのモデルを適用するのは非効率で実用的ではない。
論文 参考訳(メタデータ) (2024-05-28T07:12:06Z) - Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
大規模テキストコーパスで事前訓練されたLarge Language Models (LLMs) は、推奨システムを強化するための有望な道を示す。
オープンワールドの知識と協調的な知識を相乗化するLlm-driven knowlEdge Adaptive RecommeNdation (LEARN) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-07T04:00:30Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
説明ジェネレータを最近登場した大規模言語モデル(LLM)に置き換える影響は、まだ不明である。
本研究では,シンプルで効果的な2段階説明可能なレコメンデーションフレームワークであるLLMXRecを提案する。
いくつかの重要な微調整技術を採用することで、制御可能で流動的な説明が十分に生成できる。
論文 参考訳(メタデータ) (2023-12-25T09:09:54Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
ランキングベースレコメンデーション(LlamaRec)のための大規模言語モデルを用いた2段階フレームワークを提案する。
特に,ユーザインタラクション履歴に基づいて候補を検索するために,小規模なシーケンシャルレコメンデータを用いる。
LlamaRecは、推奨パフォーマンスと効率の両方において、データセットの優れたパフォーマンスを一貫して達成している。
論文 参考訳(メタデータ) (2023-10-25T06:23:48Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - Do LLMs Understand User Preferences? Evaluating LLMs On User Rating
Prediction [15.793007223588672]
大規模言語モデル(LLM)は、ゼロショットまたは少数ショットの方法で新しいタスクに一般化する際、例外的な機能を示した。
我々は,2億5000万から540Bのパラメータを多種多様なサイズで検討し,その性能をゼロショット,少数ショット,微調整のシナリオで評価した。
論文 参考訳(メタデータ) (2023-05-10T21:43:42Z) - Efficient Data-specific Model Search for Collaborative Filtering [56.60519991956558]
協調フィルタリング(CF)はレコメンダシステムの基本的なアプローチである。
本稿では,機械学習(AutoML)の最近の進歩を動機として,データ固有のCFモデルを設計することを提案する。
ここでキーとなるのは、最先端(SOTA)のCFメソッドを統一し、それらを入力エンコーディング、埋め込み関数、インタラクション、予測関数の非結合ステージに分割する新しいフレームワークである。
論文 参考訳(メタデータ) (2021-06-14T14:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。