LLMTreeRec: Unleashing the Power of Large Language Models for Cold-Start Recommendations
- URL: http://arxiv.org/abs/2404.00702v3
- Date: Tue, 24 Dec 2024 02:48:26 GMT
- Title: LLMTreeRec: Unleashing the Power of Large Language Models for Cold-Start Recommendations
- Authors: Wenlin Zhang, Chuhan Wu, Xiangyang Li, Yuhao Wang, Kuicai Dong, Yichao Wang, Xinyi Dai, Xiangyu Zhao, Huifeng Guo, Ruiming Tang,
- Abstract summary: Large Language Models (LLMs) can model recommendation tasks as language analysis tasks and provide zero-shot results based on their vast open-world knowledge.
But the large scale of the item corpus poses a challenge to LLMs, leading to substantial token consumption that makes it impractical to deploy in real-world recommendation systems.
We introduce a tree-based LLM recommendation framework LLMTreeRec, which structures all items into an item tree to improve the efficiency of LLM's item retrieval.
- Score: 67.57808826577678
- License:
- Abstract: The lack of training data gives rise to the system cold-start problem in recommendation systems, making them struggle to provide effective recommendations. To address this problem, Large Language Models (LLMs) can model recommendation tasks as language analysis tasks and provide zero-shot results based on their vast open-world knowledge. However, the large scale of the item corpus poses a challenge to LLMs, leading to substantial token consumption that makes it impractical to deploy in real-world recommendation systems. To tackle this challenge, we introduce a tree-based LLM recommendation framework LLMTreeRec, which structures all items into an item tree to improve the efficiency of LLM's item retrieval. LLMTreeRec achieves state-of-the-art performance under the system cold-start setting in two widely used datasets, which is even competitive with conventional deep recommendation systems that use substantial training data. Furthermore, LLMTreeRec outperforms the baseline model in A/B testing on Huawei industrial systems. Consequently, LLMTreeRec demonstrates its effectiveness as an industry-friendly solution that has been successfully deployed online. Our code is available at: https://github.com/Applied-Machine-Learning-Lab/LLMTreeRec.
Related papers
- Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation [55.21013307734612]
AoPS-Instruct is a dataset of more than 600,000 high-quality QA pairs.
LiveAoPSBench is an evolving evaluation set with timestamps, derived from the latest forum data.
Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning.
arXiv Detail & Related papers (2025-01-24T06:39:38Z) - HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling [21.495443162191332]
Large Language Models (LLMs) have achieved remarkable success in various fields, prompting several studies to explore their potential in recommendation systems.
We propose a novel Hierarchical Large Language Model (HLLM) architecture designed to enhance sequential recommendation systems.
HLLM achieves excellent scalability, with the largest configuration utilizing 7B parameters for both item feature extraction and user interest modeling.
arXiv Detail & Related papers (2024-09-19T13:03:07Z) - Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System [19.8986219047121]
Collaborative filtering recommender systems (CF-RecSys) have shown successive results in enhancing the user experience on social media and e-commerce platforms.
Recent strategies have focused on leveraging modality information of user/items based on pre-trained modality encoders and Large Language Models.
We propose an efficient All-round LLM-based Recommender system, called A-LLMRec, that excels not only in the cold scenario but also in the warm scenario.
arXiv Detail & Related papers (2024-04-17T13:03:07Z) - Towards Efficient and Effective Unlearning of Large Language Models for Recommendation [46.599206847535676]
We propose textbfE2URec, the first underlineEfficient and underlineEffective underlineUnlearning method for LLMunderlineRec.
E2URec enhances the unlearning efficiency by updating only a few additional LoRA parameters, and improves the unlearning effectiveness by employing a teacher-student framework.
arXiv Detail & Related papers (2024-03-06T08:31:35Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - GenRec: Large Language Model for Generative Recommendation [41.22833600362077]
This paper presents an innovative approach to recommendation systems using large language models (LLMs) based on text data.
GenRec uses LLM's understanding ability to interpret context, learn user preferences, and generate relevant recommendation.
Our research underscores the potential of LLM-based generative recommendation in revolutionizing the domain of recommendation systems.
arXiv Detail & Related papers (2023-07-02T02:37:07Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - PALR: Personalization Aware LLMs for Recommendation [7.407353565043918]
PALR aims to combine user history behaviors (such as clicks, purchases, ratings, etc.) with large language models (LLMs) to generate user preferred items.
Our solution outperforms state-of-the-art models on various sequential recommendation tasks.
arXiv Detail & Related papers (2023-05-12T17:21:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.