Adapting to Length Shift: FlexiLength Network for Trajectory Prediction
- URL: http://arxiv.org/abs/2404.00742v1
- Date: Sun, 31 Mar 2024 17:18:57 GMT
- Title: Adapting to Length Shift: FlexiLength Network for Trajectory Prediction
- Authors: Yi Xu, Yun Fu,
- Abstract summary: Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding.
Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration.
We introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction against varying observation periods.
- Score: 53.637837706712794
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding. Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration. However, a notable issue arises when these models are evaluated with varying observation lengths, leading to a significant performance drop, a phenomenon we term the Observation Length Shift. To address this issue, we introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction techniques against varying observation periods. Specifically, FLN integrates trajectory data with diverse observation lengths, incorporates FlexiLength Calibration (FLC) to acquire temporal invariant representations, and employs FlexiLength Adaptation (FLA) to further refine these representations for more accurate future trajectory predictions. Comprehensive experiments on multiple datasets, ie, ETH/UCY, nuScenes, and Argoverse 1, demonstrate the effectiveness and flexibility of our proposed FLN framework.
Related papers
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - Inductive Spatial Temporal Prediction Under Data Drift with Informative Graph Neural Network [9.7008424860611]
We design an Informative Graph Neural Network (INF-GNN) to distill diversified invariant patterns and improve prediction accuracy under data drift.
First, we build an informative subgraph with a uniquely designed metric, Relation Importance (RI), that can effectively select stable entities and distinct spatial relationships.
Secondly, we propose an informative temporal memory buffer to help the model emphasize valuable timestamps extracted using influence functions within time intervals.
arXiv Detail & Related papers (2024-09-20T06:21:53Z) - FlashST: A Simple and Universal Prompt-Tuning Framework for Traffic Prediction [22.265095967530296]
FlashST is a framework that adapts pre-trained models to generalize specific characteristics of diverse datasets.
It captures a shift of pre-training and downstream data, facilitating effective adaptation to diverse scenarios.
Empirical evaluations demonstrate the effectiveness of FlashST across different scenarios.
arXiv Detail & Related papers (2024-05-28T07:18:52Z) - Spatiotemporal-Linear: Towards Universal Multivariate Time Series
Forecasting [10.404951989266191]
We introduce the Spatio-Temporal- Linear (STL) framework.
STL seamlessly integrates time-embedded and spatially-informed bypasses to augment the Linear-based architecture.
Empirical evidence highlights STL's prowess, outpacing both Linear and Transformer benchmarks across varied observation and prediction durations and datasets.
arXiv Detail & Related papers (2023-12-22T17:46:34Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
arXiv Detail & Related papers (2023-11-10T17:13:26Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
Graph neural networks (GNNs) have exhibited exceptional efficacy in a diverse array of applications.
The sheer size of large-scale graphs presents a significant challenge to real-time inference with GNNs.
We propose an online propagation framework and two novel node-adaptive propagation methods.
arXiv Detail & Related papers (2023-10-17T05:03:00Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications.
Existing scalable GNNs leverage linear propagation to preprocess the features and accelerate the training and inference procedure.
We propose a novel adaptive propagation order approach that generates the personalized propagation order for each node based on its topological information.
arXiv Detail & Related papers (2022-11-01T14:38:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.