A Wireless Foundation Model for Multi-Task Prediction
- URL: http://arxiv.org/abs/2507.05938v2
- Date: Wed, 09 Jul 2025 12:45:07 GMT
- Title: A Wireless Foundation Model for Multi-Task Prediction
- Authors: Yucheng Sheng, Jiacheng Wang, Xingyu Zhou, Le Liang, Hao Ye, Shi Jin, Geoffrey Ye Li,
- Abstract summary: We propose a unified foundation model for multi-task prediction in wireless networks that supports diverse prediction intervals.<n>After trained on large-scale datasets, the proposed foundation model demonstrates strong generalization to unseen scenarios and zero-shot performance on new tasks.
- Score: 50.21098141769079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing complexity and dynamics of the mobile communication networks, accurately predicting key system parameters, such as channel state information (CSI), user location, and network traffic, has become essential for a wide range of physical (PHY)-layer and medium access control (MAC)-layer tasks. Although traditional deep learning (DL)-based methods have been widely applied to such prediction tasks, they often struggle to generalize across different scenarios and tasks. In response, we propose a unified foundation model for multi-task prediction in wireless networks that supports diverse prediction intervals. The proposed model enforces univariate decomposition to unify heterogeneous tasks, encodes granularity for interval awareness, and uses a causal Transformer backbone for accurate predictions. Additionally, we introduce a patch masking strategy during training to support arbitrary input lengths. After trained on large-scale datasets, the proposed foundation model demonstrates strong generalization to unseen scenarios and achieves zero-shot performance on new tasks that surpass traditional full-shot baselines.
Related papers
- SHIELD: Secure Hypernetworks for Incremental Expansion Learning Defense [0.0]
We introduce SHIELD, a novel approach that integrates a hypernetwork-based continual learning approach with interval arithmetic.<n>Our approach enhances security without sacrificing network adaptability, addressing the overlooked challenge of safety in continual learning.
arXiv Detail & Related papers (2025-06-09T21:43:56Z) - Temporal-Spectral-Spatial Unified Remote Sensing Dense Prediction [62.376936772702905]
Current deep learning architectures for remote sensing are fundamentally rigid.<n>We introduce the Spatial-Temporal-Spectral Unified Network (STSUN) for unified modeling.<n> STSUN can adapt to input and output data with arbitrary spatial sizes, temporal lengths, and spectral bands.<n>It unifies disparate dense prediction tasks within a single architecture by conditioning the model on trainable task embeddings.
arXiv Detail & Related papers (2025-05-18T07:39:17Z) - Large Wireless Localization Model (LWLM): A Foundation Model for Positioning in 6G Networks [26.30108656575931]
We propose a foundation-model-based solution tailored for wireless localization.<n>We first analyze how different self-supervised learning (SSL) tasks acquire general-purpose and task-specific semantic features.<n>We design a pretraining methodology for the proposed Large Wireless localization Model (LWLM)
arXiv Detail & Related papers (2025-05-15T10:04:44Z) - Bridging Distribution Gaps in Time Series Foundation Model Pretraining with Prototype-Guided Normalization [29.082583523943157]
We propose a domain-aware adaptive normalization strategy within the Transformer architecture.<n>We replace the traditional LayerNorm with a prototype-guided dynamic normalization mechanism (ProtoNorm)<n>Our method significantly outperforms conventional pretraining techniques across both classification and forecasting tasks.
arXiv Detail & Related papers (2025-04-15T06:23:00Z) - AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting [10.899510048905926]
We present adapters for managing intricate dependencies among features and quantifying uncertainty in predictions.<n>Experiments conducted on both synthetic and real-world datasets confirm the efficacy of adapters.<n>Our framework, AdaPTS, positions adapters as a modular, scalable, and effective solution.
arXiv Detail & Related papers (2025-02-14T15:46:19Z) - NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records.<n>We address challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection.
arXiv Detail & Related papers (2024-12-30T00:47:49Z) - DisenTS: Disentangled Channel Evolving Pattern Modeling for Multivariate Time Series Forecasting [43.071713191702486]
DisenTS is a tailored framework for modeling disentangled channel evolving patterns in general time series forecasting.
We introduce a novel Forecaster Aware Gate (FAG) module that generates the routing signals adaptively according to both the forecasters' states and input series' characteristics.
arXiv Detail & Related papers (2024-10-30T12:46:14Z) - LiNeS: Post-training Layer Scaling Prevents Forgetting and Enhances Model Merging [80.17238673443127]
LiNeS is a post-training editing technique designed to preserve pre-trained generalization while enhancing fine-tuned task performance.<n>LiNeS demonstrates significant improvements in both single-task and multi-task settings across various benchmarks in vision and natural language processing.
arXiv Detail & Related papers (2024-10-22T16:26:05Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding.
Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration.
We introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction against varying observation periods.
arXiv Detail & Related papers (2024-03-31T17:18:57Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Continual Adaptation for Deep Stereo [52.181067640300014]
We propose a continual adaptation paradigm for deep stereo networks designed to deal with challenging and ever-changing environments.
In our paradigm, the learning signals needed to continuously adapt models online can be sourced from self-supervision via right-to-left image warping or from traditional stereo algorithms.
Our network architecture and adaptation algorithms realize the first real-time self-adaptive deep stereo system.
arXiv Detail & Related papers (2020-07-10T08:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.