On the True Distribution Approximation of Minimum Bayes-Risk Decoding
- URL: http://arxiv.org/abs/2404.00752v1
- Date: Sun, 31 Mar 2024 17:47:22 GMT
- Title: On the True Distribution Approximation of Minimum Bayes-Risk Decoding
- Authors: Atsumoto Ohashi, Ukyo Honda, Tetsuro Morimura, Yuu Jinnai,
- Abstract summary: Minimum Bayes-risk (MBR) decoding has recently gained renewed attention in text generation.
Previous studies reported that the performance varies by sampling methods.
This study uses anomaly detection to measure the degree of approximation.
- Score: 3.409873726183299
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Minimum Bayes-risk (MBR) decoding has recently gained renewed attention in text generation. MBR decoding considers texts sampled from a model as pseudo-references and selects the text with the highest similarity to the others. Therefore, sampling is one of the key elements of MBR decoding, and previous studies reported that the performance varies by sampling methods. From a theoretical standpoint, this performance variation is likely tied to how closely the samples approximate the true distribution of references. However, this approximation has not been the subject of in-depth study. In this study, we propose using anomaly detection to measure the degree of approximation. We first closely examine the performance variation and then show that previous hypotheses about samples do not correlate well with the variation, but our introduced anomaly scores do. The results are the first to empirically support the link between the performance and the core assumption of MBR decoding.
Related papers
- Theoretical Aspects of Bias and Diversity in Minimum Bayes Risk Decoding [32.02732402635305]
Minimum Bayes Risk (MBR) decoding can mitigate this problem by utilizing automatic evaluation metrics and model-generated pseudo-references.
We decompose errors in the estimated quality of generated hypotheses into two key factors: bias, which reflects the closeness between utility functions and human evaluations, and diversity, which represents the variation in the estimated quality of utility functions.
arXiv Detail & Related papers (2024-10-19T07:32:10Z) - Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation [60.493180081319785]
We propose a systematic way to estimate the intrinsic capacity of a truncation sampling method by considering the trade-off between diversity and risk at each decoding step.
Our work provides a comprehensive comparison between existing truncation sampling methods, as well as their recommended parameters as a guideline for users.
arXiv Detail & Related papers (2024-08-24T14:14:32Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Self-Consistent Decoding for More Factual Open Responses [28.184313177333642]
"Sample & Select" improves factuality by a 30% relative margin against decoders of DoLA, P-CRR, and S-CRR.
We collect human verifications of the generated summaries, confirming the factual superiority of our method.
arXiv Detail & Related papers (2024-03-01T17:31:09Z) - Favour: FAst Variance Operator for Uncertainty Rating [0.034530027457862]
Bayesian Neural Networks (BNN) have emerged as a crucial approach for interpreting ML predictions.
By sampling from the posterior distribution, data scientists may estimate the uncertainty of an inference.
Previous work proposed propagating the first and second moments of the posterior directly through the network.
This method is even slower than sampling, so the propagated variance needs to be approximated.
Our contribution is a more principled variance propagation framework.
arXiv Detail & Related papers (2023-11-21T22:53:20Z) - Epsilon Sampling Rocks: Investigating Sampling Strategies for Minimum
Bayes Risk Decoding for Machine Translation [20.749494856466526]
We show how different sampling approaches for generating candidate lists for Minimum Bayes Risk decoding affect performance.
Based on our insights into their limitations, we experiment with the recently proposed epsilon-sampling approach, which prunes away all tokens with a probability smaller than epsilon.
arXiv Detail & Related papers (2023-05-17T00:11:38Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Arithmetic Sampling: Parallel Diverse Decoding for Large Language Models [65.52639709094963]
Methods such as beam search and Gumbel top-k sampling can guarantee a different output for each element of the beam, but are not easy to parallelize.
We present a framework for sampling according to an arithmetic code book implicitly defined by a large language model.
arXiv Detail & Related papers (2022-10-18T22:19:41Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
existing models either fail or face a dramatic drop under the so-called near-distribution" setting.
We propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data.
Our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks.
arXiv Detail & Related papers (2022-05-28T02:02:53Z) - Learnable Locality-Sensitive Hashing for Video Anomaly Detection [44.19433917039249]
Video anomaly detection (VAD) mainly refers to identifying anomalous events that have not occurred in the training set where only normal samples are available.
We propose a novel distance-based VAD method to take advantage of all the available normal data efficiently and flexibly.
arXiv Detail & Related papers (2021-11-15T15:25:45Z) - A Statistical Analysis of Summarization Evaluation Metrics using
Resampling Methods [60.04142561088524]
We find that the confidence intervals are rather wide, demonstrating high uncertainty in how reliable automatic metrics truly are.
Although many metrics fail to show statistical improvements over ROUGE, two recent works, QAEval and BERTScore, do in some evaluation settings.
arXiv Detail & Related papers (2021-03-31T18:28:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.